arXiv:2203.02018v4 [cs.LG] 12 Oct 2022

Zero-shot Transfer Learning within a Heterogeneous
Graph via Knowledge Transfer Networks

Minji Yoon* John Palowitch Dustin Zelle
Carnegie Mellon University Google Research Google Research
Ziniu Hu* Ruslan Salakhutdinov Bryan Perozzi
University of California Los Angeles Carnegie Mellon University Google Research
Abstract

Data continuously emitted from industrial ecosystems such as social or e-commerce
platforms are commonly represented as heterogeneous graphs (HG) composed
of multiple node/edge types. State-of-the-art graph learning methods for HGs
known as heterogeneous graph neural networks (HGNNs) are applied to learn
deep context-informed node representations. However, many HG datasets from
industrial applications suffer from label imbalance between node types. As there
is no direct way to learn using labels rooted at different node types, HGNNs have
been applied on only a few node types with abundant labels. We propose a zero-
shot transfer learning module for HGNNSs called a Knowledge Transfer Network
(KTN) that transfers knowledge from label-abundant node types to zero-labeled
node types through rich relational information given in the HG. KTN is derived
from the theoretical relationship, which we introduce in this work, between distinct
feature extractors for each node types given in a HGNN model. KTN improves
performance of 6 different types of HGNN models by up to 960% for inference on
zero-labeled node types and outperforms state-of-the-art transfer learning baselines
by up to 73% across 18 different transfer learning tasks on HGs.

1 Introduction

Large technology companies commonly maintain large relational datasets, derived from their internal
logs, that can be represented as or joined into a massive heterogeneous graph (HG) composed of
nodes and edges with multiple types (30). For instance, in e-commerce networks, there are product,
user, and review nodes, all interconnected by many edge types that represent forms of interactions
such as spending (user-product), reviewing (user-review), and reviews-of (product-review). To learn
powerful features representing the complex multimodal structure of HGs, various heterogeneous
graph neural networks (HGNN) have been proposed (155265355 143)).

A common issue in these industrial applications of HGNNSs is the label imbalance among different
node types. For instance, publicly available content nodes — such as those representing video, text,
and image content — are abundantly labelled, whereas labels for other types (such as user or account
nodes) may be much more expensive to collect (or even not available, e.g. due to privacy restrictions).
This means that in most standard training settings, HGNN models can only learn to make good
inferences for a few label-abundant node types, and can usually not make any inferences for the
remaining node types, given the absence of any labels for them.

If there is a pair of label-abundant and zero-labeled node types which share an inference task, could we
transfer knowledge between them? One body of work has focused on transferring knowledge between

*Work done while interning at Google

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

nodes of the same type from two different HGs (i.e., graph-to-graph transfer learning) (16} 40).
However, these approaches are not applicable in many real-world scenarios for three reasons. First,
any external large-scale HG that could be used in a graph-to-graph transfer learning setting would
almost surely be proprietary. Second, even if practitioners could obtain access to an external industrial
HG, it is unlikely the distribution of that (source) graph would match their target graph well enough
to apply transfer learning. Finally, node types suffering label scarcity are likely to suffer the same
issue on other HGs (e.g. user nodes).

In this paper, we introduce a zero-shot transfer learning approach for a single HG (assumed to be
fully-owned by the practitioners), transferring knowledge from labelled to unlabelled node types.
This setting is distinct from any graph-to-graph transfer learning scenarios, since the source and target
domains exist in the same HG dataset, and are assumed to have different node types. Our model
utilizes the shared context between source and target node types; for instance, in the e-commerce
network, the latent (unknown) labels of user nodes can be strongly correlated with spending/reviewing
patterns that are encoded in the cross-edges between user nodes and product/review nodes. We propose
a novel zero-shot transfer learning problem for this HG learning setting as follows:

Informal Problem Definition 1. Zero-shot cross-type transfer learning running on a HG:
Given a heterogeneous graph G with node types {s, t, - - - } with abundant labels for source type s but
no labels for target type t, can we train HGNNs to infer the labels of target-type nodes?

A naive solution to this problem would be to re-use an HGNN pre-trained on the source nodes for
target node inference, given that both domains exist in the same HG. However, as we show in our
paper, HGNNSs have distinct parameter sets for each node type (13)), edge type (26)), and meta-path
type (8;135). These facts cause HGNNSs to learn entirely different feature extractors for nodes and
edges of different types — in other words, the final embeddings for source and target nodes are
computed by different sets of parameters in HGNNs. Thus, a classifier pre-trained on source nodes
will fail to perform well on inference tasks for target nodes. The field of domain adaptation (DA)
targets this setting, seeking to transfer knowledge from a source domain with abundant labels to a
target domain which lacks them (9; [19; 20; 27). However, distinct feature extractors across node
types in HGNNS break a standard assumption of DA setting, namely that source and target domains
share the same feature extractors (e.g., CNNs for both source and target image domains). As we
demonstrate in this paper, in our problem setting, DA approaches fail to achieve the outstanding
performance they are known for in computer vision and NLP.

In our work, we first dissect the gradient path of HGNN models to see how feature extractors are
designed independently for each node type, and some empirical consequences. Then we theoretically
analyze how feature extractors across node types relate to each other and how their output distributions
could be represented in terms of each other. We model this theoretical relationship between two
feature extractors as a Knowledge Transfer Network (KTN) which can be optimized to transform
target embeddings to fit the source domain distribution. We perform an extensive evaluation of our
method on 18 different transfer learning tasks on HGs where we compare against state-of-the-art
domain adaptation baselines. Additionally, in order to understand which environments are ideal for
transferring knowledge between different node types for HGs, we formulate a synthetic heterogeneous
graph generator that allows us to study the sensitivity of these methods.

Our main contributions are:

* Novel and practical problem definition: To the best of our knowledge, KTN is the first zero-shot
cross-type transfer learning method running on a heterogeneous graph — transfer knowledge across
different node types within a heterogeneous graph.

* Generality: KTN is a principled approach analytically induced from the architecture of HGNNss,
thus applicable to any HGNN models, showing up to 960% performance improvement for zero-
labeled node inference across 6 different HGNN models.

* Effectiveness: We show that KTN outperforms state-of-the-art domain adaptation methods, being
up to 73.3% higher in MRR on 18 different transfer learning tasks on HGs.

 Sensitivity Analysis: We provide a HG generator model to analyze how the node attribute and
edge distributions of HGs affect the performance of KTN and other methods on the task.

2 Related Work

Various transfer learning problems have been defined on the graph domain. (21522 38} 42) construct
synthetic graphs from unstructured data and transfer knowledge over the graphs using GNNs. On

the other hand, (13} 145 245 37) focus on extracting knowledge from the existing graph structures.
They pretrain a GNN model on a source graph and re-use the model on a target graph. While these
methods focus on homogeneous graphs, (165 40) transfer HGNNs across different HGs. However,
none of them can be directly applied to our cross-type transfer learning problem running on a single
HG. Here we cover two classes of learning approaches that are related to our problem. As HGNNs
are the models to which our method can be applied, we cover them extensively in Section 3]

Zero-shot domain adaptation (DA) transfers knowledge from a source domain with abundant
labels to a target domain which lacks them. Zero-shot DA can be categorized into three groups
— MMD-based methods, adversarial methods, and optimal-transport-based methods. MMD-based
methods (18} 20; 29) minimize the maximum mean discrepancy (MMD) (11) between the mean
embeddings of two distributions in reproducing kernel Hilbert space. Adversarial methods (9;[19)
are motivated by theory in (2} 3) suggesting that a good cross-domain representation contains no
discriminative information about the origin of the input. They learn domain-invariant features by
a min-max game between the domain classifier and the feature extractor. Optimal transport-based
methods (27) estimate the empirical Wasserstein distance (23) between two domains and minimizes
the distance in an adversarial manner. All three categories rely on two networks — a feature extractor
network and a task classifier network. Adversarial and OT-based methods use an additional domain
classifier network. Due to the assumption that source and target domains have the same modality El,
the standard DA setting assumes identical feature extractors across domains. More descriptions can
be found in Appendix [A.9]

Label propagation (LP) approaches (e.g., (45)) use message-passing to pass each node’s label to
its neighbors according to normalized edge weights. LP relies on only a graph’s edges, and is therefore
easily applied to a heterogeneous graph — labels are simply propagated across edges, regardless of
type. In this paper we also evaluate a similarly-simple baseline, embedding propagation (EP). Similar
to LP, EP recursively propagates source embeddings (computed using source labels) until they reach
the target domain. EP exploits both node attribute information and the node adjacencies, but only
uses the source node embeddings.

3 Preliminaries
In this section we review heterogeneous graphs and heterogeneous graph neural networks (HGNNSs).

3.1 Heterogeneous graph

Heterogeneous graphs (HGs) are an important abstraction for modeling the relational data of multi-
modal systems. Formally, a heterogeneous graph is defined as G = (V, £, T, R) where the node set
V; the edge set £ consisting of ordered tuples e;; := (4, j) with 4, j € V, where e;; € £ iff an edge
exists from i to j; the set of node types 7 with associated map 7 : V — T the set of relation types
‘R with associated map ¢ : £ — R. This flexible formulation allows directed, multi-type edges. We
additionally assume the existence of a node attribute vector z; € X, (;) for each ¢ € V, where X} is
an attribute matrix specific to nodes of type ¢ .

3.2 Heterogeneous Graph Neural Networks (HGNN)

Various HGNN models have been proposed (15; 265 35} 415 43). Fully-specified HGNN models
have specialized parameters for each node type (15), edge type (26), and meta-path type (8) to most
effectively utilize the complex relationships encoded in the HG data structure. In this paper, we use a
flavor of HGNN known as a Heterogeneous Message-Passing Neural Network (HMPNN) as our base
model on which to demonstrate KTN (though KTN can be implemented in almost any HGNN, as
we show in experiments in Section[6). The HMPNN merely extends the standard MPNN (10) by
specializing all transformation and message matrices in each node/edge type. With its generality,
HMPNN is itself a base model for RGCN (26) and HGT (15)), and is also widely used as a default
HGNN model in popular GNN libraries (e.g., pyG (7), TF-GNN (6), DGL (34)).

*In our problem, source and target node types could have either (1) different distributions on the same
attribute space or (2) entirely different attribute spaces

In a HMPNN, for any node j, the embedding of node j at the [-th layer is obtained with the following
generic formulation:

h;” = Transform") (Aggregate(l)(é'(j))) (1)
where £(j) = {(¢,7) € € :i,j € V} denotes all the edges which connect (directionally) to j. The

above operations typically involve type-specific parameters to exploit the inherent multiplicity of
modalities in heterogeneous graphs. First, we define a linear Message function:

Mesage i, j) = ML, - (1 1) ®
where M,El) are the specific message passing parameters for each edge type » € R and each of L
HMPNN layers. Then defining &,-(j) as the set of edges of type r pointing to node j, the Aggregate
function mean-pools messages by edge type, and concatenates:

Aggregate)(£(j) = || i S Message® (c) 3)
reR e€Er(j)
Finally, the Transform function maps the message into a type-specific latent space:
Transform' () = a(WT(l&) - Aggregate”) (£(5))) 4)

where Wt(l) are the specific transformation parameters for each node type ¢ € 7 and each of L
HMPNN layers. By stacking L layers, HMPNN outputs highly contextualized final node represen-
tations, and the final node representations can be fed into another model to perform downstream
heterogeneous network tasks, such as node classification or link prediction.

3.3 Problem definition

Using notations defined above, we formalize our novel transfer learning problem on HGs.

Problem Definition 1. Zero-shot cross-type transfer learning running on a HG:

In a given heterogeneous graph G = (V,E, T, R) with node attributes X = U7X}, assume node
types s and t share a classification task { (i, y;) : © € Vs, Vi }. During the training phase, using labels
{(i,y:) : © € Vs} only for source-type nodes, we train an HGNN model f : f(G, X) = h; to get node
embeddings h; for all nodes i € V and a classifier g : g(h;) = §; to predict labels §j; from the node
embeddings h;. During the test phase, our task is to predict labels {(j,y;) : j € V;} of target-type
nodes where none of labels of target-type nodes were used for training.

4 Cross-Type Feature Extractor Transformations in HGNNs

We define f; : G — R? to be the “feature extractor" of a HGNN, which is composed of parameters
participating to map input node attributes of type ¢ into a shared feature space R<. In this section, we
derive a strict transformation between feature extractors within a HMPNN. Specifically, for any two
nodes i, j with types 7(i¢) = s and 7(j) = ¢, we derive an expression for f in terms of f;, and use
that expression to inspire a trainable transfer learning module called KTN in the following section.
For simplicity, throughout this section we ignore the activation «(-) within the Transform function
in Equation (@).

4.1 Feature extractors in HMPNNs

We first reason intuitively about the differences between fs and f; when s # ¢, using a toy hetero-
geneous graph shown in Figure Consider nodes v and v9, noticing that 7(1) # 7(2). Using
HMPNN’s equations (2)-(@) from Section[3.2] for any I € {0,...,L — 1} we have

l -1 -1 l -1 -1

nO = w® [(B0 D) D (ng YY) 5)
l l l -1 -1 l -1 -1

n = wO @ (W0 V) D (nS gD (©)

where h§0) = z;. From these equations, we see that hgl) and hg), which are features of different
types, are extracted using disjoint sets of model parameters at [-th layer. In a 2-layer HMPNN,
this creates unique gradient backpropagation paths between the two node types, as illustrated in
Figures In other words, even though the same HMPNN is applied to node types s and ¢, the
feature extractors f; and f; have different computational paths. Therefore they project node features
into different latent spaces, and have different update equations during training.

Node type Node type
ugh ugn

t
©—

(a) Toy graph (b) Gradient path for feature (c) Gradient path for feature
extractor fs extractor fi

Figure 1: Tllustration of a toy heterogeneous graph and the gradient paths for feature extractors fs and f;.
Colored arrows in figures (b) and (c) show that the same HGNN nonetheless produces different gradient paths
for each feature extractor. Color density of each box in (b) and (c) is proportional to the degree of participation
of the corresponding parameter in each feature extractor.

Small gradients —nu —M
o® 9 8 for M3, M My —m
08 _; .@ ' _M‘(:) ML(SZ
o7 3 B — MG —m
';?u 6 & =) No gradients
= 4= S A 2 2]
§os ; ; | for ”.’}z)rMEc)
<oa 5 5 i
03 —SOUrCe ‘: (SI L 1" -
/"—‘——’\‘—' target-src-path N N A . |
IR VRRIL N AR .
o2 = e 6 , TN
o] 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Number of iterations Number of iterations Number of iterations
(a) Test accuracy across various (b) L2 norms of gradients of (c) L2 norms of gradients of

feature extractors Wrey Mgy

Figure 2: HGNNSs trained on a source domain underfit a target domain even on a “nice" heterogeneous graph. (a)
Performance on the simulated heterogeneous graph for 4 kinds of feature extractors; (source: source extractor f
on source domain, target-src-path: source extractor fs on target domain, target-org-path: target extractor f;
on target domain, and theoretical-KTN': target extractor f; on target domain using KTN.) (b-c) L2 norms of
gradients of parameters Wy and My.) in HGNN models.

4.2 Empirical gap between f, and f;

Here we study the experimental consequences of the above observation via simulation. We first
construct a synthetic graph extending the 2-type graph in Figure[I(a) to have multiple nodes per-type,
and multiple classes. To maximize the effects of having different feature extractors, we sample source
and target nodes from the same feature distributions and each classes are well-separated in the both
the graph and feature space (more details available in Appendix[A7.T).

On such a well-aligned heterogeneous graph, without considering the observation in Section {1}
there may seem to be no need for domain adaptation from f; to f;. However, when we train the
HMPNN model solely on s-type nodes, as shown in Figure 2(a)| we find the test accuracy for s-type
nodes to be high (90%, blue line) and the test accuracy for ¢-type nodes to be quite low (25%, green
line). Now if instead we make the ¢-type nodes use the source feature extractor f,, much more
transfer learning is possible (~65%, orange line). This shows that the different feature extractors
present in the HMPNN model result in the significant performance drop, and simply matching input
data distributions can not solve the problem.

To analyze this phenomenon at the level of backpropagation, in Figures we show the
magnitude of gradients passed to parameters of source and target node types. As illustrated in
Figures [1(b) , we find that the final-layer Transform parameter Wt@) for type-t nodes have
zero gradients (Figure 2(b)), and similarly for the final-layer Message parameters (Figure 2(C)).
Additionally, those same parameters in the first-layer for ¢-type nodes have much smaller gradients
than their s-type counterparts: Wt(l) (blue line in Figure 2(b))), M S(tl) and Mt(tl) (blue and orange lines
in Figure [2(c)) appear below than other lines. This is because they contribute to fs less than f;

This case study shows that even when an HGNN is trained on a relatively simple, balanced, and
class-separated heterogeneous graph, a model trained only on the source domain node type cannot
transfer to the target domain node type.

4.3 Relationship between feature extractors in HMPNNs

We show that a HMPNN model provides different feature extractors for each node type. However,
still, fs and f; are built inside one HMPNN model and interchange intermediate feature embeddings

with each other. Both H S(L) and Ht(L) (the output of f; and f;) are computed using the previous

layer’s intermediate embeddings H. S(L_l), H t(L_l), and any other connected node type embeddings

H Q(CL_l) at the L-th HMPNN layer. Therefore H, S(L) and H t(L) can be mathematically presented by
each other using the (L — 1)-th layer embeddings as connecting points, so do f, and f;. Based on this
intuition, we derive a strict transformation between f, and f;, which will motivate the core domain
adaptation component of our proposed KTN model.

Theorem 1. Given a heterogeneous graph G = {V,E, T, R}. For any layer | > 0, define the set of
(I — 1)-th layer HMPNN parameters as

QU MY r e RPUWIY st e T) ©)

Let A be the total n x n adjacency matrix. Then for any s,t € T there exist matrices A}, = a;s(A)
and Q%, = q15(Q"=Y) such that

where aus(-) and qis(-) are matrix functions that depend only on s, t.

The full proof of Theorem 1 can be found in Appendix [A.1] Notice that in Equation [} Q7, acts as a

macro-Transform operator that maps Ht(L) into the source domain, then A}, aggregates the mapped
embeddings into s-type nodes. In other words, Q);, acts as a mapping matrix from the target domain
to the source domain. To examine the implications, we run the same experiment as described in

Section while this time mapping the target features /1 t(L) into the source domain by multiplying
with Q7 in Equation 8] before passing over to a task classifier. We see via the red line in Figure 2(a)
that, with this mapping, the accuracy in the target domain becomes much closer to the accuracy in the
source domain (~70%). Thus, we use this theoretical transformation as a foundation for our trainable
HGNN domain adaptation module, introduced in the following section.

4.4 Generalized cross-type transformations for HGNNs

In this section we showed that a HMPNN feature extractor on the (label-abundant) source node
type can be expressed in terms of the (label-scarce) target node type feature extractor, and this
transformation enables cross-type zero-shot learning for the target node type. As most HGNNs have
distinct feature extractors for each node types (even single-layer HGNNs, which have specialized
parameters for each node/edge attribute projection layer), they will suffer from the under-trained target
embeddings phenomena we showed in Section[d.2] For instance, in the meta-path based MAGNN
model (8)), meta-paths directing toward the target node types are generally less engaged in the source
node feature computation and thus receive smaller gradients. While we cannot derive the exact
cross-type transformation for all possible HGNNS, the core intuition in the HMPNN theory holds,

namely that H, ﬁL) and Ht(L) are both computed using the previous layer’s intermediate embeddings
(see Section .3)) across all HGNN models. This observation allows us to extend our KTN and apply
it to almost any HGNN. We illustrate this by applying KTN to 6 different HGNN models in Section 6}
where we see greatly increased target-type accuracy.

S KTN: Trainable Cross-Type Transfer Learning for HGNNs

Inspired by these derivations we introduce our primary contribution, Knowledge Transfer Networks.
We begin by noting Equation [§]in Theorem [I] has a similar form to a single-layer graph convolutional
network (17) with a deterministic transformation matrix (Q;,) and a combination of adjacency
matrices directing from target node type ¢ to source node type s (A;,). Instead of hand-computing
the mapping function @}, for arbitrary HGs and HGNNs (which would be intractable), we learn the
mapping function by modelling Equation [8]as a trainable graph convolutional network, named the

Algorithm 1 Training step on a source domain

Require: heterogeneous graph G = (V, &, T, R), node feature matrices X, source node type s, target node
type t, adjacency matrix A:s, source node label matrix Vs.
Ensure: HGNN f, classifier g, KTN txrn

. HY HP =26, H® = X)
Hf = tKTN(Ht(L)) = AtstL)Tts
Lirs = || B — 1y

2

L= [fCL(g(H;L)),ys) + ALkt~
Update f, g, t using VL

Algorithm 2 Test step on a target domain
Require: pretrained HGNN f, classifier g, KTN txrn
Ensure: target node label matrix YV

1 HY =G, H” = x)

2. Hf = HY'T,,

3: return g(H;)

Knowledge Transfer Network, txrn(-). KTN replaces Q;, and A}, in Equationas follows:
tern(Hy) = Aw HU VT, ©
LN = "HgL) - tKTN(Ht(L))H2 (10)

where A, is an adjacency matrix from node type t to s, and Ty, is a trainable transformation matrix.
By minimizing Lk1N, 1%s is optimized to a mapping function of the target domain into the source
domain.

5.1 Algorithm

We minimize a classification loss L¢ and a transfer loss Lk jointly with regard to a HGNN model
f, a classifier g, and a knowledge transfer network tgyxn as follows:

frgz;gNECL(g(f(Q, X)s), Vs) + A (G, X)s — tern(£(G, X))l

where) is a hyperparameter regulating the effect of Lxrn; and f(G, X'), and £f(G, X); denote H. S(L)

and H, t(L) , respectively. Algorithm [1|describes a training step on the source domain. After computing
the node embeddings H, SEL) and HtL), we map H, t(L) to the source domain using tgpn and compute

Lxk1~. Then, we update the models using gradients of L. (computed using only source labels) and
LKTN- Algorithmdescribes the test phase on the target domain. After we get node embeddings Ht(m

from the trained HGNN model, we map Ht(L) into the source domain using the trained transformation
matrix T3s. Finally we pass the transformed target embeddings H; into the classifier which was
trained on the source domain.

Indirect Connections We note that in practice, the source and target node types can be indirectly
connected in HGs via other node types (i.e., there is no A;s). Appendix [A.2]describes how we can
easily extend KTN to cover domain adaption scenarios in this case.

6 Experiments

6.1 Datasets

Open Academic Graph (OAG). A dataset introduced in (44) composed of five types of nodes:
papers (P), authors (A), institutions (I), venues (V), fields (F) and their corresponding relationships.
Paper and author nodes have text-based attributes, while institution, venue, and field nodes have
text- and graph structure-based attributes. Paper, author, and venue nodes are labeled with research
fields in two hierarchical levels, L1 and L2. We construct three field-specific subgraphs from OAG:
computer science, computer networks, and machine learning academic graphs.

Table 1: Open Academic Graph on Computer Science field. The gain column shows the relative gain of our
method over using no domain adaptation (Base column). o.0.m denotes out-of-memory errors.

Task [Metric [Base [DAN JAN [DANN CDAN CDAN-E [WDGRL [LP EP [KTN (gain)
P-A (L1) NDCG 0.399 0.452 0.405 0.292 0.262 0.261 0.260 0.178 0.425 0.623 (56%)
MRR 0.297 0.361 0.314 0.179 0.129 0.111 0.138 0.041 0.363 0.629 (112%)
A-P (L1) NDCG 0.401 0.566 0.598 0.294 0.364 0.246 0.195 0.153 0.557 0.733 (83%)
MRR 0.318 0.508 0.544 0.229 0.270 0.090 0.047 0.022 0.507 0.711 (123%)
A-V (L1) NDCG 0.459 0.457 0.470 0.382 0.346 0.359 0.403 0.207 0.461 0.671 (46%)
MRR 0.364 0.413 0.458 0.341 0.205 0.253 0.327 0.011 0.389 0.698 (92%)
V-A (L1) NDCG 0.283 0.443 0.435 0.242 0.372 0.418 0.272 0.153 0.154 0.584 (107%)
MRR 0.133 0.365 0.345 0.094 0.241 0.444 0.144 0.006 0.006 0.586 (340%)
P-A (L2) NDCG 0.229 0.230 0.0.m 0.239 0.0.m 0.0.m 0.168 0.0.m 0.215 0.282 (23%)
MRR 0.121 0.118 0.0.m 0.140 0.0.m 0.0.m 0.020 0.0.m 0.143 0.2248 (86%)
AP (L2) NDCG 0.197 0.162 0.0.m 0.204 0.158 0.161 0.132 0.0.m 0.208 0.287 (46%)
MRR 0.095 0.052 0.0.m 0.106 0.032 0.045 0.017 0.0.m 0.132 0.242 (155%)
AV (L2) NDCG 0.347 0.329 0.295 0.325 0.288 0.273 0.289 0.0.m 0.297 0.402 (16%)
MRR 0.310 0.296 0.198 0.223 0.128 0.097 0.110 0.0.m 0.227 0.399 (29%)
V-A (L2) NDCG 0.235 0.249 0.251 0.214 0.197 0.205 0.217 0.0.m 0.119 0.252 (7%)
MRR 0.129 0.157 0.161 0.090 0.044 0.068 0.085 0.0.m 0.000 0.166 (28%)

Table 2: PubMed graph. The gain column shows the relative gain over using Base column.

Task [Metric | Base | DAN JAN | DANN CDAN CDAN-E | WDGRL | LP EP [KTN (gain)
D-G NDCG 0.587 0.629 0.615 0.614 0.624 0.646 0.604 0.601 0.571 0.700 (19%)

MRR 0.372 0.425 0.414 0.397 0.428 0.443 0.388 0.389 0.336 0.499 (34%)
G-D NDCG 0.596 0.599 0.577 0.599 0.581 0.606 0.578 0.576 0.580 0.662 (11%)
> MRR 0.354 0.362 0.332 0.356 0.337 0.362 0.340 0.351 0.353 0.445 (26%)

PubMed.(39) A network composed of of four types of nodes: genes (G), diseases (D), chemicals
(C), and species (S), and their corresponding relationships. Gene and chemical nodes have graph
structure-based attributes, while disease and species nodes have text-based attributes. Each gene and
disease is labeled with a set of diseases they belong to or cause.

Synthetic heterogeneous graphs. We generate stochastic block models (1) with multiple node/edge
types. We label each node types with the same set of classes. Then we control feature/edge distribu-
tions within/between node types by manipulating feature/edge signal-to-noise ratio within/between
classes. A complete definition of the generative model is given in Appendix

6.2 Baselines

We compare KTN with two MMD-based DA methods (DAN (18), JAN (20)), three adversarial
DA methods (DANN (9), CDAN (19), CDAN-E (19)), one optimal transport-based method (WD-
GRL (27)), and two traditional graph mining methods (LP and EP (45)). For KTN and DA methods,
we use HMPNN as their base HGNN model. More information of each method is in Appendix[A.9]

6.3 Zero-shot transfer learning

We run 18 different zero-shot transfer learning tasks across three OAG and PubMed graphs. We
run each experiment 3 times and report the average value. Due to the space limitation, we report
the standard deviations and results on OAG-computer networks and OAG-machine learning in
Appendix [A.3] Each heterogeneous graph has the same node classification task for both source and
target node types. During training, we are given 1) the heterogeneous graph structure information (i.e.,
adjacency matrices), 2) input node attribute matrices for all node types, and 3) labels on source-type
nodes for the classification task. During the test phase, we predict labels on target-type nodes for
the same classification task. The performance is evaluated by NDCG and MRR — widely adopted
ranking metrics (14;[15)).

In Tables[T]and [2] our proposed method KTN consistently outperforms all baselines on all tasks and
graphs by up to 73.3% higher in MRR (P-A(L1) task in OAG-CS, Table . When we compare with
the base accuracy using the model pretrained on the source domain without any domain adaptation
(3rd column, Base), the results are even more impressive. We see our method KTN provides relative
gains of up to 340% higher MRR without using any labels from the target domain. These results show
the clear effectiveness of KTN on zero-shot transfer learning tasks on a heterogeneous graph. We
mention that venue and author node types are not directly connected in the OAG graphs (Figure [5(b)]
in Appendix), but KTN successfully transfer knowledge by passing intermediate node types.

Table 3: KTN on different HGNN models. The Source column shows accuracy on for source node types. Base
and KTN columns show accuracy for target node types without/with using KTN, respectively. The Gain column
shows the relative gain of our method over using no domain adaptation.

P-A (L1) A-P(L1)
HGNN type Metric Source Base KTN Gain ‘ Source Base KTN Gain
R-GCN NDCG 0.765 0.337 0.577 71.12% 0.648 0.388 0.647 66.82%
MRR 0.757 0.236 0.587 148.73% 0.623 0.270 0.611 126.18%
HAN NDCG 0.476 0.179 0.520 190.56 % 0.515 0.182 0.512 181.33%
MRR 0.416 0.047 0.497 960.55 % 0.509 0.055 0.527 850.90%
HGT NDCG 0.757 0.294 0.574 95.07% 0.670 0.283 0.581 104.83%
MRR 0.749 0.178 0.563 216.17% 0.670 0.149 0.565 279.52%
MAGNN NDCG 0.657 0.463 0.574 24.01% 0.676 0.557 0.622 11.68%
MRR 0.631 0.378 0.556 47.33% 0.680 0.509 0.592 16.14%
MPNN NDCG 0.602 0.443 0.590 33.11% 0.646 0.307 0.621 101.92%
MRR 0.572 0.319 0.575 80.10% 0.660 0.145 0.595 311.42%
HMPNN NDCG 0.789 0.399 0.623 56.14% 0.671 0.401 0.733 82.88%
MRR 0.777 0.297 0.629 111.86% 0.661 0.318 0.711 123.30%

Baseline Performance. Among baselines, MMD-based models (DAN and JAN) outperform
adversarial-based methods (DANN, CDAN, and CDAN-E) and optimal transport-based method
(WDGRL), unlike results reported in (19; 27). These reversed results are a consequence of HGNN’s
unique feature extractors for each domains. Adversarial- and optimal transport-based methods define
separate losses for source and target feature extractors (which are not separated in their shared feature
extractor assumption), resulting in divergent gradients between different feature extractors and poor
domain adaption performance. This shows again the importance of considering different feature
extractors in HGNNs. More analysis can be found in Appendix

6.4 Generality of KTN

Here, we use 6 different HGNN models, R-GCN (26), HAN (35), HGT (15), MAGNN (8),
MPNN (10), and HMPNN. MPNN maps all node types to the shared embedding space using
projection matrices at the beginning then applies MPNN layers designed for homogeneous graphs. In
Table KTN improves accuracy on the target nodes across all HGNN models by up to 960%. This
shows the strong generality of KTN. More results and analysis can be found in Appendix [A.5]

6.5 Sensitivity analysis

Using our synthetic heterogeneous graph generator, we generate non-trivial 2-type heterogeneous
graphs to examine how the feature and edge distributions affect the performance of KTN and other
baselines. We generate a range of test-case scenarios by manipulating (1) signal-to-noise ratio o, of
within-class edge distributions and (2) signal-to-noise ratio oy of within-class feature distributions
across all of the (a) source-source (s <> s), (b) target-target (¢ <+ t), and (c) source-target (s <> t)
relationships.

For instance, in Figure [3] for each edge type

(s > s5,t < t, and s < t, differentiated by / N\ (Biw same/different)
colors), there are two different types of edges, y— node types
edges within the same class (plain line) and sOs
edges across different classes (dotted line). For N
each edge type, we manipulate o. by chang- Val _® %
ing the ratio of within-class and cross-class “* % * o !

. . .. C w same/different
edges, and o, by diverging feature distribu- VAN classes (e.g., A, B, C)
tions between classes. Thus there will be 6 C g C —
signal-to-noise ratios in total. A higher signal- Source node type o
to-noise ratio for a particular data dimension s’ ——

(edges or features) across a particular relation-
shipr € {s <+ s, t <> t, s <> t} means that
classes are more separable in that data dimension, when comparing within 7, and hence easier for
HGNNS . Note that while tuning one 0.y on the range [1.0, 10.0], the remaining five o.) are held
at 10.0. Additionally, we vary o .y across two scenarios: (I) “easy": source and target node types
have same number of clusters and same feature dimensions, (II) “hard" source and target node types
have different number of clusters and feature dimensions. Note that clusters and classes are different
concepts in this experiment; several clusters could have the same class label.

Figure 3: Synthetic HG generator

NDCG

3 3] 3 T T 3
Signal-to-noise ratio 7, Signal-to-noise ratio oy Signal-to-noise ratio ', Signal-to-noise ratio

(a) Edge dist. (easy) (b) Feature dist. (easy) (c) Edge dist. (hard) (d) Feature dist. (hard)

Figure 4: Effects of edge and feature distributions across classes and types in heterogeneous graphs.

Figures[d(a)|and A(c)|show results from changing o, across the three relation types. We see that KTN
is affected only by o, across the s <+ ¢ (cross-types) relationship, which accords with our theory,
since KTN exploits the between-type adjacency matrix. Surprisingly, as seen in Figures fi(b)|and A(d)]
we do not find a similar dependence of KTN on o, which shows that KTN is robust by learning
purely from edge homophily in the absence of feature homophily. Regarding the performance of
other baselines, EP shows similar tendencies as KTN— only affected by cross-type o, — because
EP also relies on cross-type propagation along edges. However, its accuracy is bounded above
due to the fact that it does not exploit the (unlabelled) target features. DAN and DANN, which do
not exploit cross-type edges, are not affected by cross-type o.. However, they show either low or
unstable performance across different scenarios. DAN shows especially poor performance in the
“hard" scenarios (Figure and [A(d)), failing to deal with different feature spaces for source and
target domains.

7 Conclusion

In this work, we proposed the first cross-type zero-shot transfer learning method for heterogeneous
graphs. Our method, Knowledge Transfer Networks (KTN) for Heterogeneous Graph Neural
Networks, transfers knowledge from label-abundant node types to label-scarce node types. We
illustrate KTN handily improves HGNN performances up to 960% for zero-labeled node types across
6 different HGNN models and outperforms many challenging baselines up to 73% higher in MRR.
Future work in the area includes filtering noisy edges between source and target domains and making
KTN more robust and less dependent on structure of given noisy heterogeneous graphs.

Limitation Statement Our transfer learning method is limited to node types sharing the same task
(i.e., the same classifier). We plan to extend our work to transfer knowledge between different tasks
running on different node types on a heterogeneous graph.

Societal Impact Statement KTN allows organizations to learn better from their own graph data,
leveraging its structure without requiring external information. We believe this has a number of
positive applications (preserving model quality without needing extra datasets). However like all
modeling improvements, its true impact depends on what modeling tasks the technique is applied to.

8 Acknowledgement

MY gratefully acknowledges support from Amazon Graduate Research Fellowship. GPUs are
partially supported by AWS Cloud Credit for Research program.

References

[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments. The
Journal of Machine Learning Research, 18(1):6446-6531, 2017.

[2] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-

nifer Wortman Vaughan. A theory of learning from different domains. Machine learning,
79(1):151-175, 2010.

10

[3] Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. Analysis of represen-
tations for domain adaptation. Advances in neural information processing systems, 19:137,

2007.

[4] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

[5] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable representation
learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 135-144, 2017.

[6] Oleksandr Ferludin, Arno Eigenwillig, Martin Blais, Dustin Zelle, Jan Pfeifer, Alvaro Sanchez-
Gonzalez, Sibon Li, Sami Abu-El-Haija, Peter Battaglia, Neslihan Bulut, et al. Tf-gnn: Graph
neural networks in tensorflow. arXiv preprint arXiv:2207.03522, 2022.

[7] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[8] Xinyu Fu, Jiani Zhang, Ziqgiao Meng, and Irwin King. Magnn: Metapath aggregated graph
neural network for heterogeneous graph embedding. In Proceedings of The Web Conference
2020, pages 2331-2341, 2020.

[9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Frangois
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The journal of machine learning research, 17(1):2096-2030, 2016.

[10] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263-1272. PMLR, 2017.

[11] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723-773,
2012.

[12] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 1025-1035, 2017.

[13] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

[14] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1857-1867, 2020.

[15] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of The Web Conference 2020, pages 2704-2710, 2020.

[16] Tiancheng Huang, Ke Xu, and Donglin Wang. Da-hgt: Domain adaptive heterogeneous graph
transformer. arXiv preprint arXiv:2012.05688, 2020.

[17] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[18] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features
with deep adaptation networks. In International conference on machine learning, pages 97—-105.
PMLR, 2015.

[19] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. arXiv preprint arXiv:1705.10667, 2017.

11

[20] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with
joint adaptation networks. In International conference on machine learning, pages 2208-2217.
PMLR, 2017.

[21] Yadan Luo, Zijian Wang, Zi Huang, and Mahsa Baktashmotlagh. Progressive graph learning
for open-set domain adaptation. In International Conference on Machine Learning, pages
6468-6478. PMLR, 2020.

[22] Xinhong Ma, Tianzhu Zhang, and Changsheng Xu. Gcan: Graph convolutional adversarial
network for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8266-8276, 2019.

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111-3119, 2013.

[24] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. Gee: Graph contrastive coding for graph neural network pre-training. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1150-1160, 2020.

[25] Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation
with optimal transport. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 737-753. Springer, 2017.

[26] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic
web conference, pages 593-607. Springer, 2018.

[27] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation
learning for domain adaptation. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[28] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan
Wang. An overview of microsoft academic service (mas) and applications. In Proceedings of
the 24th international conference on world wide web, pages 243-246, 2015.

[29] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[30] Yizhou Sun and Jiawei Han. Mining heterogeneous information networks: principles and
methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 3(2):1-159,
2012.

[31] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction
and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 990-998, 2008.

[32] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Miiller. Graph clustering with
graph neural networks. arXiv preprint arXiv:2006.16904, 2020.

[33] Anton Tsitsulin, Benedek Rozemberczki, John Palowitch, and Bryan Perozzi. Synthetic graph
generation to benchmark graph learning. WWW’21, Workshop on Graph Learning Benchmarks,
2021.

[34] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

[35] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Het-
erogeneous graph attention network. In The World Wide Web Conference, pages 2022-2032,
2019.

12

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, Anthony
Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 38—45, 2020.

Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In Proceedings of The Web Conference 2020, pages
1457-1467, 2020.

Qitian Wu, Chenxiao Yang, and Junchi Yan. Towards open-world feature extrapolation: An
inductive graph learning approach. Advances in Neural Information Processing Systems,
34:19435-19447, 2021.

Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network
representation learning: A unified framework with survey and benchmark. IEEE Transactions
on Knowledge and Data Engineering, 2020.

Shuwen Yang, Guojie Song, Yilun Jin, and Lun Du. Domain adaptive classification on hetero-
geneous information networks. In Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence, pages 1410-1416, 2021.

Yaming Yang, Ziyu Guan, Jianxin Li, Wei Zhao, Jiangtao Cui, and Quan Wang. Interpretable
and efficient heterogeneous graph convolutional network. IEEE Transactions on Knowledge
and Data Engineering, 2021.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling
missing data with graph representation learning. Advances in Neural Information Processing
Systems, 33:19075-19087, 2020.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Het-
erogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 793-803, 2019.

Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan Wang,
Bin Shao, Rui Li, et al. Oag: Toward linking large-scale heterogeneous entity graphs. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2585-2595, 2019.

Xiaojin Zhu. Semi-supervised learning with graphs. Carnegie Mellon University, 2005.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We describe it in Section
We also show which environments are ideal for our method via sensitivity test in
Section

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We
describe it in Section[/| We also mention about possible private information leakage in
graph-to-graph transfer learning in Section[I} By proposing transfer learning between
node types in one heterogeneous graph, we can alleviate this issue.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We mention
the full set of assumptions for Theorem [T]in Section @.3]

(b) Did you include complete proofs of all theoretical results? [Yes] The proof for Theo-
rem [T]is described in Appendix

13

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We provide a
URL to our code in Appendix [A.T1]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] They are specified in Appendix [A.8]and [A.TT]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] They are specified in Appendix [A.3]and[A.3]

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUgs, internal cluster, or cloud provider)? [Yes] They are specified in Appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite public domain
adaptation library ADA and heterogeneous graph neural network library OpenHGNN
that we have used in our experiment in Appendix

(b) Did you mention the license of the assets? [N/A] All codes and data we used are public.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We provide a URL to our code in Appendix

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We do not use any personal data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We do not use any personal data.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Appendix

A.1 Proof of Theorem[]

In this proof, we adopt a simplified version of our message-passing function that ignores the skip-
connection:

Message' (i, j) = MY h(J) (11)

¢ (4,7)
The HGNN trained in the experimental results shown in Figure 2] also does not use skip-connections

and hence represents a theoretically-exact KTN component. In the real experiments, we use (1)
skip-connections, exploiting their usual benefits (12), and (2) the trainable version of KTN.

Proof. Without loss of generality, we prove the result for the case where R = {(s,t) : s,t € T},
meaning the type of an edge is identified with the (ordered) types of the neighbor nodes. In other
words, there is only one edge modality possible, such as a social networks with multiple node types
(e.g. “users", “groups") but only one edge modality (“friendship"). In the case of multiple edge
modalities (e.g. “friendship" and “message"), the result is extended trivially (through with more
algebraically-dense forms of a;s and g;s).

Throughout this proof, we use the following notation for the set of all j-adjacent edges of relation
type r:
&) =A{(,4) i€V, (i) =r} (12)

We write A, .., to denote the sub-matrix of the total n,, x n,, adjacency matrix A corresponding to

node types z1, 22 € T, and A, ., to denote the same matrix divided by its column sum. H. ;l) is the
(row-wise) n, X d; embedding matrix of z-type nodes at layer (.

We first compute the [-th output gﬁl) of the Aggregate step defined for HGNNSs in Equation for any

node j € V such that 7(j) = s. The output of Aggregate is a concatenation of edge-type-specific
aggregations (see Equation' Note that at most 7' = |7 | elements of this concatenation are non-zero,

since the node j only participates in 7 out of 7 relation types in R. Thus we can write g()

!
gj(_) = || REI (J)| Z Message'! (¢)
R e€E.(j)

JEam] D Messagel(c)
e€€qs(7)

S [(1), (-=1)
- Iﬂgsm(j)\ > My
(i:3)€€04 ()

-1
= |l |sTg<J>\M(l) >oonY
e (4,5)EExs (5)

= || M (H0) A9,
€T

where [1532 denotes the j-th column of A,.. Notice that
h;l = Transform" (j) = W(L)g(” (13)

@

and (again) at most 7" elements of the concatenation g; are non-zero. Therefore let ngls) be the

columns of Wy) that select the concatenated element of g](l)

can write

corresponding to node type x. Then we

h =S wil M (H(l 1>) A9, (14)
zeT

15

Algorithm 3 Training step for one minibatch (indirect version)

Require: heterogeneous graph G = (V, £, T, R), node feature matrices X, adjacency matrices Ay, where
V(z,y) € R, source node type s, target node type ¢, source node label matrix Y.
Ensure: HGNN f, classifier g, KTN txrn

H®P B =((H® = X, G), Hf =0

1:

2: for each meta-path p =t — s do
3 =t 2= Ht(L)

4: for each node type y € p do
5: Z = ApyZTyy

6: rT=y

7: end for

8: H =H+Z

9: end for

10: ACKTN = HH(L> — Ht*

2
11: L:£CL((H(L))-I—AﬁKTN
12: Update f, g, txrn using VL

Algorithm 4 Test step for a target domain (indirect version)

Require: pretrained HGNN f, classifier g, KTN txrn
Ensure: target node label matrix Y

- HY =t(H© = X,G), H; =0

2: for each meta-pathp =t — s do

3 w=t2Z=H"

4 for each node type y € p do
5: X =2Tyy

6: T=y

7 end for

8 H;/=H;+Z

9: end for

10: return g(H;)

Defining the operator Q : (gﬁ? Mggé) this implies that
= 3 AnHQL
—
)) Héll—l) 0 0 g11;1)
=[As,sy- s Avps) 0 0

L li
0 O HGET 1) :S;Tsl)
_ A.SH.(Z—I)QFé—l)

Similarly we have Ht(l) = A.tH.(l_l)Q,(i_l). Since H'" and Ht(l) share the term H' ", we can
write

HY = A A7 HD Q)Y (15)
where X ~! denotes the pseudo-inverse. |

A.2 Indirectly Connected Source and Target Node Types

When source and target node types are indirectly connected by another node type =, we can simply

extend tKTN(Ht(L)) to (Azs(AwH (L)Tm)Tm) where T}, T, becomes a mapping function from
target to source domains. Algorithms [3]and §] show how to extend KTN. For every step (z — v)
in a meta-path ({ — --- —) connecting target node type ¢ to source node type s, we define a
transformation matrix 75, run a convolution operation with an adjacency matrix A, , then map the
transformed embedding to the source domain. We run the same process for all meta-paths connecting
from target node type ¢ to source node type s, and sum up them to match with the source embeddings.
In the test phase, we run the same process to get the transformed target embeddings, but this time,
without adjacency matrices. We run Algorithm 3]and [for transfer learning tasks between author and
venue nodes which are indirectly connected by paper nodes in OAG graphs (Figure[5(b)). As shown

16

Table 4: Open Academic Graph on Computer Science field. The gain column shows the relative gain of our
method over using no domain adaptation (Base column). o.0.m denotes out-of-memory errors.

Task Metric Base | DAN JAN | DANN CDAN CDAN-E | WDGRL | LP EP | KIN (gain%)
NDCG 0.399 0.452 0.405 0.292 0.262 0.261 0.26 0.178 0.425 0.623 (56)
P-A (L1) std 0.010 0.012 0.032 0.009 0.021 0.014 0.021 0.000 0.006 0.004
MRR 0.297 0.361 0.314 0.179 0.129 0.111 0.138 0.041 0.363 0.629 (112)
std 0.024 0.006 0.041 0.011 0.032 0.031 0.033 0.000 0.005 0.004
NDCG 0.401 0.566 0.598 0.294 0.364 0.246 0.195 0.153 0.557 0.733 (83)
A-P (L1) std 0.003 0.012 0.014 0.034 0.049 0.046 0.025 0.000 0.002 0.007
MRR 0.318 0.508 0.544 0.229 0.27 0.09 0.047 0.022 0.507 0.711 (123)
std 0.001 0.029 0.028 0.093 0.117 0.037 0.029 0.000 0.003 0.009
NDCG 0.459 0.457 0.47 0.382 0.346 0.359 0.403 0.207 0.461 0.671 (46)
A-V (L1) std 0.030 0.033 0.036 0.015 0.029 0.109 0.024 0.000 0.002 0.004
MRR 0.364 0413 0.458 0.341 0.205 0.253 0.327 0.011 0.389 0.698 (92)
std 0.079 0.08 0.093 0.05 0.098 0.143 0.044 0.000 0.004 0.003
NDCG 0.283 0.443 0.435 0.242 0.372 0.418 0.272 0.153 0.154 0.584 (107)
V-A (L1) std 0.045 0.012 0.007 0.004 0.048 0.039 0.004 0.000 0.006 0.005
MRR 0.133 0.365 0.345 0.094 0.241 0.444 0.144 0.006 0.006 0.586 (340)
std 0.074 0.027 0.017 0.011 0.103 0.115 0.018 0.007 0.010
NDCG 0.229 0.23 0.0.m 0.239 0.0.m 0.0.m 0.168 0.0.m 0.215 0.282 (23)
P-A (L2) std 0.005 0.003 - 0.006 - - 0.007 - 0.004 0.002
MRR 0.121 0.118 0.0.m 0.14 0.0.m 0.0.m 0.02 0.0.m 0.143 0.2248 (86)
std 0.019 0.004 - 0.01 - - 0.006 - 0.003 0.003
NDCG 0.197 0.162 0.0.m 0.204 0.158 0.161 0.132 0.0.m 0.208 0.287 (46)
AP (L2) std 0.006 0.009 - 0.006 0.019 0.022 0.012 - 0.004 0.001
MRR 0.095 0.052 0.0.m 0.106 0.032 0.045 0.017 0.0.m 0.132 0.242 (155)
std 0.009 0.022 - 0.016 0.018 0.027 0.008 - 0.005 0.002
NDCG 0.347 0.329 0.295 0.325 0.288 0.273 0.289 0.0.m 0.297 0.402 (16)
AV (L2) std 0.003 0.034 0.014 0.013 0.011 0.058 0.011 - 0.002 0.003
MRR 0.310 0.296 0.198 0.223 0.128 0.097 0.11 0.0.m 0.227 0.399 (29)
std 0.004 0.109 0.047 0.065 0.003 0.096 0.034 - 0.001 0.015
NDCG 0.235 0.249 0.251 0.214 0.197 0.205 0.217 0.0.m 0.119 0.252 (7)
V-A (L2) std 0.002 0.002 0.006 0.004 0.008 0.004 0.002 - 0.001 0.007
MRR 0.130 0.157 0.161 0.09 0.044 0.068 0.085 0.0.m 0.000 0.166 (28)
std 0.010 0.011 0.009 0.015 0.007 0.009 0.005 - 0.000 0.012

in Tables[d} [6] and[7] we successfully transfer HGNN models between author and venue nodes (A-V
and V-A) for both L1 and L2 tasks.

Will lengths of meta-paths affect the performance? We examine the performance of KTN varying
the length of meta-paths between source and target node types. In Table[§] accuracy decreases with
longer meta-paths. When we add additional meta-paths than the minimum path, it also brings noise
in every edge types. Note that author and venue nodes are indirectly connected by paper nodes; thus
the minimum length of meta-paths in the A-V (L1) task is 2. The accuracy in the A-V (L1) task with
a meta-path of length 1 is low because KTN fails to transfer anything with a meta-path shorter than
the minimum. Using the minimum length of meta-paths is enough for KTN.

A.3 More results for Zero-shot Transfer Learning in Section [6.3]

We show the zero-shot transfer learning results with error bars on OAG-computer science and Pubmed
in Tables] and [5] We also present the results with error bars on OAG-computer networks and OAG-
machine learning in Tables [6]and [7] respectively. Across all tasks and graphs, our proposed method
KTN consistently outperforms all baselines.

A.4 Analysis for Baselines in Section [6.3]

Among baselines, MMD-based models (DAN and JAN) outperform adversarial based methods
(DANN, CDAN, and CDAN-E) and optimal transport-based method (WDGRL), unlike results
reported in (195 27). These reversed results are a consequence of HGNN’s unique feature extractors
for source and target domains. When fs and f; denote feature extractors for source and target
domains, respectively, DANN and CDAN define their adversarial losses as a cross entropy loss
(E[log fs] — E[log f;]) where gradients of the subloss E[log f;] are passed only back to f,, while
gradients of the subloss E[log f;] are passed only back to f;. Importantly, source and target feature
extractors do not share any gradient information, resulting in divergence. This did not occur in their
original test environments where source and target domains share a single feature extractor. Similarly,
WDGRL measures the first-order Wasserstein distance as an adversarial loss, which also brings the
same effect as the cross-entropy loss we described above, leading to divergent gradients between
source and target feature extractors. On the other hand, DAN and JAN define a loss in terms of
higher-order MMD between source and target features. Then the gradients of the loss passed to

17

Table 5: PubMed

Task | Metric | Base | DAN JAN | DANN CDAN CDAN-E | WDGRL | LP EP | KIN (gain%)

NDCG | 0587 | 0629 0615 | 0614 0.624 0.646 0.604 0601 0571 | 0.700 (19)
b | st 0004 | 0013 0028 | 0008 0.078 0.015 0.022 0000 0.004 | 0.005

MRR | 0372 | 0425 0414 | 0397 0428 0443 0.388 0389 0336 | 0499 (34)

std 0003 | 0.007 0054 | 0013 0.066 0.027 0.035 0000 0.003 | 0.006

NDCG | 0596 | 0599 0577 | 0599 0381 0.606 0578 0576 0580 | 0.662(1D)
ep | 0007 | 0020 0032 | 0011 0054 0.019 0.019 0000 0011 | 0.003

MRR | 0354 | 0362 0332 | 0356 0337 0.362 0.340 0351 0353 | 0.445(26)

std 0005 | 0015 0019 | 0008 0023 0.031 0.015 0000 0.008 | 0.002

Table 6: Open Academic Graph on Computer Network field

Task [Metric | Base | DAN JAN | DANN CDAN CDAN-E [WDGRL | LP EP | KTN (gain%)
NDCG | 0331 | 0344 oom | 0335 0.0m 0.0m 0287 0221 0270 | 0.382(16)

pa@y | 0.004 | 0.005 - 0.004 - - 0.012 0000 0.003 | 0.004
MRR 0250 | 0277 oom | 0280 o.om 0.0m 0.199 0.130 0270 | 0.360 (44)
std 0024 | 0.012 - 0.007 - - 0.004 0000 0.003 | 0.010
NDCG | 0313 | 0290 oom | 0250 0234 0.168 0.266 0114 0319 | 0.364(17)

Apa | 0.002 | 0.023 - 0.021 0.041 0.025 0.030 0000 0.004 | 0.003
MRR 0250 | 0233 oom | 0.130 0.116 0.051 0212 0038 0296 | 0.368(47)
std 0015 | 0.039 - 0.051 0.069 0.037 0.061 0.000 0.005 | 0.004
NDCG | 0539 | 0521 0519 | 0510 0.467 0362 0471 0232 0443 | 0567 (5

Avaz | S 0012 | 0031 0008 | 0.022 0.008 0.045 0.024 0000 0002 | 0.008
MRR 0584 | 0528 0461 | 0510 0.293 0294 0365 0000 0406 | 0.628(8)
std 0042 | 0015 0011 | 0.054 0.013 0.088 0.019 0000 0004 | 0.016
NDCG | 0256 | 0343 0345 | 0265 0328 0316 0263 0133 0119 | 0.341(33)

vaA@y | St 0006 | 0012 0005 | 0.005 0.005 0.003 0.003 0000 0.001 | 0.005
MRR 0.117 | 029 0286 | 0.151 0.285 0275 0.147 0000 0000 | 0.281(141)
std 0020 | 0.009 0004 | 0.009 0.006 0.008 0.009 0000 0000 | 0.014

each feature extractor contain both source and target feature information, resulting in a more stable
gradient estimation. This shows again the importance of considering different feature extractors in
HGNN .

JAN, CDAN, and CDAN-E often show out of memory issues in Tables[d] [] and [7] These baselines
consider the classifier prediction whose dimension is equal to the number of classes in a given task.
That is why JAN, CDAN, and CDAN-E fail at the L2 field prediction tasks in OAG graphs where the
number of classes is 17, 729.

LP performs worst among the baselines, showing the limitation of relying only on graph structures.
LP maintains a label vector with the length equal to the number of classes for each node, thus shows
out-of-memory issues on tasks with large number of classes on large-size graphs (L2 tasks with
17,729 labels on the OAG-CS graph). EP performs moderately well similar to other DA methods,
but lower than KTN up to 60% absolute points of MRR, showing the limitation of not using target
node attributes.

A.5 More results for Generality of KTN in Section [6.4]

We show KTN performance on 6 different types of HGNN models across 4 different zero-shot
domain adaptation tasks on the OAG-computer science dataset in Table 9} Descriptions of each
HGNN model can be found in Appendix[A.T0} While KTN consistently improves all HGNN models’
performance on zero-labeled node types using labels rooted at other node types, the magnitude of
improvements varies. While HAN sees up to 4958% (V-A (L1) task in Table[9), MAGNN is improved
by up to 47% (P-A(L1) task) or sees no improvement (A-V(L1) task). This gap stems from how many
parameters each HGNN model shares across node types. HAN does not share any parameters during
message-passing operations (every parameters are specialized to each meta-path), while MAGNN
shares the transformation matrices across all node types at every layer. By sharing more parameters
with other node types, the gradients are more likely passed to target node type-specific parameters,
leaving less room for improvement by KTN. However, KTN is still necessary for any HGNN models.
MPNN who shares all parameters except the projection matrices that map different input attributes
into the same embedding space at the beginning still sees improvements by up to 311%. Again, these
experimental results show the impact of having different feature extractors for each node type in
HGNN models.

18

Table 7: Open Academic Graph on Machine Learning field

Task | Metric | Base | DAN JAN | DANN CDAN CDAN-E | WDGRL | LP EP | KIN (gain%)
NDCG | 0268 | 0290 oom | 0291 oom 0249 0232 0272 0215 | 0318(19)

pAqz | 0.002 | 0.009 - 0.004 - 0.005 0.004 0000 0002 | 0.004
MRR | 0134 | 0220 oom | 0222 oom 0.095 0.098 0195 0143 | 0.269 (102)
std 0.006 | 0.020 - 0.026 - 0.003 0.037 0.000 0.003 | 0.006
NDCG | 0261 | 0225 oom | 0234 0228 0.241 0.241 0119 0.267 | 0319 (22)

APz | 0.002 | 0.009 - 0004 0005 0.011 0.002 0.000 0.001 | 0.005
MRR | 0207 | 0127 oom | 055 0.I52 0.095 0.182 0035 0214 | 0.287(39)
std 0018 | 0.042 - 0.008 0.009 0.003 0.017 0.000 0012 | 0011
NDCG | 0465 | 0493 0463 | 0477 0408 0422 0393 0224 0424 | 0.538(16)

Avay | 0006 | 0.004 0003 | 0003 0.006 0013 0.005 0000 0005 | 0.004
MRR | 0469 | 0542 0537 | 0519 0412 0.240 0213 0001 0391 | 0.632(35)
std 0039 | 0008 0005 | 0003 0015 0.008 0.009 0000 0021 | 0.006
NDCG | 0252 | 0293 0292 | 0237 0242 0.255 0.250 0137 0.119 | 0302 (20)

va@z | 9 0006 | 0011 0009 | 0004 0.003 0.002 0.004 0000 0.003 | 0.007
MRR | 0131 | 0212 0199 | 008 0.085 0.129 0.118 0000 0.000 | 0.227(73)
std 0016 | 0023 0013 | 0005 0.2l 0.007 0012 0000 0.000 | 0015

Table 8: Meta-path length in KTN: increasing the meta-path longer than the minimum does not bring
significant improvement to KTN. Note that the minimum length of meta-paths in the A-V (L1) task is 2.

Task P-A (LD AV (LD
Meta-path | o MRR | NDCG MRR
length

1 0.623 0.621 | 0.208 0.010
2 0.627 0.628 | 0.673 0.696
3 0.608 0.611 | 0.627 0.648
4 0.61 0.623 | 0.653 0.671

A.6 Effect of trade-off coefficient \

We examine the effect of A on transfer learning performance. In Table[I0] as A decreases, target
accuracy decreases as expected. Source accuracy also sees small drops since Lxrn functions as a
regularizer; by removing the regularization effect, source accuracy decreases. When A becomes large,
both source and target accuracy drop significantly. Source accuracy drops since the effect of Lxn
becomes larger than the classification loss L¢r. Even the effect of transfer learning become larger by
having larger A, since the source accuracy which will be transferred to the target domain is low, the
target accuracy is also low. Thus we set A to 1 throughout the experiments.

A.7 Synthetic Heterogeneous Graph Generator

Our synthetic heterogeneous graph generator is based on attributed Stochastic Block Models
(SBM) (32; 133)), using blocks (clusters) as the node classes. In the attributed SBM, graphs ex-
hibit within-type cluster homophily at the edge-level (nodes most-frequently connect to other nodes
in the same cluster), and at the feature-level (nodes are closest in feature space to other nodes in the
same cluster). To produce heterogeneous graphs, we additionally introduce between-type cluster
homophily, which allows us to model real-world heterogeneous graphs in which knowledge can be
shared across node types.

The first step in generating a heterogeneous SBM is to decide how many clusters will partition
each node type. Assume within-type cluster counts k1, ..., kp. We allow for between-type cluster
homophily with a K7 := min;{k; }-partition of clusters such that each cluster group has at least one
corresponding cluster from other node types.

Secondly, edge-level homophily is controlled by signal-to-noise ratios o, = p/q where nodes within-
cluster are connected with probability p and nodes between-cluster are connected with probability
g. Additionally, edges within one cluster group across different types (see previous paragraph) is
controlled together with edges between different cluster groups across different types using some o..
In Section[6.5] we describe the manipulation of multiple o, parameters within-and-between types.

Finally, node attributes are generated by a multivariate Normal mixture model, using the cluster
partition as the mixture groups. Thus feature-level homophily is controlled by increasing the
variance of the cluster centers o, while keeping the within-cluster variance fixed. Cross-type feature

19

Table 9: KTN on different HGNN models: The Source column shows accuracy on source node types. Base
and KTN columns show accuracy on target node types without/with using KTN, respectively. The Gain column
shows the relative gain of our method over using no transfer learning.

P-A (LD AP (LD
HGNN type Metric Source Base KTN | Gain% | Source Base KTN | Gain%
NDCG 0.765 0.337 0.577 71.12 0.648 0.388 0.647 66.82
R-GCN std 0.004 0.005 0.002 0.006 0.007 0.004
MRR 0.757 0.236 0.587 148.73 0.623 0.270 0.611 126.18
std 0.002 0.003 0.001 0.005 0.008 0.004
NDCG 0.476 0.179 0.520 190.56 0.515 0.182 0.512 181.33
HAN std 0.004 0.006 0.003 0.004 0.009 0.011
MRR 0.416 0.047 0.497 960.55 0.509 0.055 0.527 850.90
std 0.001 0.002 0.002 0.005 0.004 0.005
NDCG 0.757 0.294 0.574 95.07 0.670 0.283 0.581 104.83
HGT std 0.002 0.003 0.004 0.001 0.003 0.009
MRR 0.749 0.178 0.563 216.17 0.670 0.149 0.565 279.52
std 0.005 0.007 0.001 0.002 0.007 0.006
NDCG 0.657 0.463 0.574 24.01 0.676 0.557 0.622 11.68
MAGNN std 0.003 0.001 0.003 0.001 0.001 0.003
MRR 0.631 0.378 0.556 47.33 0.680 0.509 0.592 16.14
std 0.003 0.002 0.004 0.001 0.002 0.005
NDCG 0.602 0.443 0.590 33.11 0.646 0.307 0.621 101.92
MPNN std 0.002 0.002 0.001 0.005 0.013 0.004
MRR 0.572 0.319 0.575 80.10 0.660 0.145 0.595 311.42
std 0.001 0.003 0.005 0.002 0.024 0.003
NDCG 0.789 0.399 0.623 56.14 0.671 0.401 0.733 82.88
H-MPNN std 0.001 0.005 0.001 0.003 0.005 0.009
MRR 0.777 0.297 0.629 111.86 0.661 0.318 0.711 123.30
std 0.003 0.001 0.002 0.007 0.004 0.008
V-A (L1) A-V (L1)
HGNN type Metric | Source Base KTN | Gain% | Source Base KTN | Gain%
NDCG 0.664 0.426 0.530 24.36 0.660 0.599 0.744 24.26
R-GCN std 0.003 0.006 0.002 0.001 0.008 0.004
MRR 0.683 0.325 0.514 58.39 0.656 0.524 0.785 49.87
std 0.003 0.008 0.004 0.011 0.009 0.005
NDCG 0.618 0.153 0.510 23235 0.515 0.546 0.689 26.21
HAN std 0.005 0.007 0.003 0.008 0.003 0.005
MRR 0.634 0.010 0.516 4958.82 0.508 0.511 0.758 48.28
std 0.002 0.005 0.002 0.001 0.008 0.007
NDCG 0.615 0.234 0.536 128.95 0.694 0.367 0.735 100.22
HGT std 0.002 0.005 0.002 0.006 0.007 0.009
MRR 0.638 0.095 0.537 464.88 0.699 0.267 0.772 189.21
std 0.006 0.002 0.005 0.002 0.005 0.012
NDCG 0.536 0.513 0.513 0.00 0.684 0.676 0.692 2.37
std 0.005 0.001 0.001 0.001 0.002 0.001
MAGNN MRR 0.586 0.522 0.522 0.00 0.686 0.751 0.752 0.13
std 0.004 0.001 0.002 0.002 0.001 0.004
NDCG 0.578 0.380 0.532 40.03 0.639 0.578 0.794 37.19
MPNN std 0.008 0.008 0.004 0.007 0.007 0.005
MRR 0.603 0.253 0.505 100.12 0.652 0.584 0.847 44.96
std 0.001 0.003 0.007 0.006 0.001 0.006
NDCG 0.670 0.283 0.584 106.50 0.676 0.459 0.671 46.22
H-MPNN std 0.002 0.002 0.006 0.005 0.004 0.003
MRR 0.689 0.133 0.586 339.76 0.677 0.364 0.698 91.92
std 0.003 0.003 0.005 0.01 0.005 0.002
Table 10: Effect of \
P-A (L1) A-V (L1)
Metric NDCG MRR NDCG MRR
A Source Target Source Target Source Target Source Target
10-° | 0780 0587 0772 0.595 0689 0.626 0690 0.642
103 0.788 0.58 0.779 0.576 0.687 0.654 0.689 0.677
10° 0.792 0.621 0.788 0.633 0.689 0.670 0.692 0.696
102 0750 0.617 0757 0.623 0654 0.644 0.659 0.668
104 0.143 0.177 0.007 0.031 0.411 0.432 0.373 0.421

20

Table 11: Statistics of Open Academic Graph

Domain | #papers [#authors [#fields | #venues | #institues |
Computer Science 544,244 510,189 45,717 6,934 9,097
Computer Network | 75,015 82,724 12,014 2,115 4,193
Machine Learning 90,012 109,423 19,028 3,226 5,455
Domain #P-A #P-F #P-V #A-1 #P-P #F-F
Computer Science 1,091,560 | 3,709,711 | 544,245 | 612,873 | 11,592,709 | 525,053
Computer Network | 155,147 562,144 75,016 111,180 | 1,154,347 110,869
Machine Learning 166,119 585,339 90,013 156,440 | 1,209,443 163,837
Table 12: Statistics of PubMed Graph

#gene | #disease | #chemicals | #species |

13,561 20,163 26,522 2,863

#G-G #G-D #D-D #C-G #C-D

32,211 25,963 68,219 31,278 51,324

#C-C #C-S #S-G #S-D #S-S

124375 | 6,298 | 3,156 | 5246 | 1,597

homophily is controlled by setting a center of cluster centers within-type with linear combinations of
centers (of cluster centers) of other types. Note that features of different types are allowed to have
different dimensions, as we generate different mixture-model cluster centers for each cluster within
each type.

A.7.1 Toy Heterogeneous Graph in Section[d.2]

Using the synthetic graph procedure described above, we used the following hyperparameters to
simulate the toy heterogeneous graph shown in Figure[2] We generate the graph with 2 node types and
4 edge types as described in Figure[I(a)} then we divide each node type into 4 classes of 400 nodes. To
generate an easy-to-transfer scenario, signal-to-noise ratio oy between means of feature distributions
are all set to 10. The ratio o, of the number of intra-class edges to the number of inter-class edges is
set to 10 among the same node types and across different node types. The dimension of features is
set to 24 for both node types.

A.7.2 Sensitivity test in Section

Figure [5(a)] shows the structures of graphs we used in Section[6.5] The dimension of features are set
to 24 for both node types for the "easy" scenario, and 32 and 48 for types s and ¢, respectively, for the
"hard" scenario. Additionally, for the "hard" scenario, we divide the ¢ nodes into 8 clusters instead of
4. The other hyperparameters o, and oy are described in Section @ For each unique value of o .
across the six (o(.y, r) pairs, we generate 5 heterogeneous graphs.

A.8 Real-world Dataset

Open Academic Graph (OAG) (28; 31} [44)) is the largest publicly available heterogeneous
graph. It is composed of five types of nodes: papers, authors, institutions, venues, fields and their
corresponding relationships. Papers and authors have text-based attributes, while institutions, venues,
and fields have text- and graph structure-based attributes. To test the generalization of the proposed
model, we construct three field-specific subgraphs from OAG: the Computer Science (OAG-CS),
Computer Networks (OAG-CN), and Machine Learning (OAG-ML) academic graphs.

Papers, authors, and venues are labeled with research fields in two hierarchical levels, L1 and L2.
OAG-CS has both L1 and L2 labels, while OAG-CN and OAG-ML have only L2 labels (their L1
labels are all "computer science"). Transfer learning is performed on the L1 and L2 field prediction
tasks between papers, authors, and venues for each of the aforementioned subgraphs. Note that
paper-author (P-A) and paper-venue (P-V) are directly connected, while author-venue (A-V) are
indirectly connected via papers.

21

Institute Author Gene Disease

S T
Venue @_Pa/per @Field Q/Chemiculs Species
(a) Synthetic graph (b) OAG (c) PubMed

Figure 5: Schema of synthetic and real-world heterogeneous graphs

The number of classes in the L1 task is 275, while the number of classes in the L2 task is 17, 729. The
graph statistics are listed in Table E], in which P-A, P-F, P-V, A-I, P-P, and F-F denote the edges
between paper and author, paper and field, paper and venue, author and institute, the citation links
between two papers, and the hierarchical links between two fields. The graph structure is described
in Figure

For paper nodes, features are generated from each paper’s title using a pre-trained XLNet (36)). For
author nodes, features are averaged over features of papers they published. Feature dimension of
paper and author nodes is 769. For venue, institution, and field node types, features of dimension 400
are generated from their heterogeneous graph structures using metapath2vec (3)).

PubMed (39) is a novel biomedical network constructed through text mining and manual process-
ing on biomedical literature. PubMed is composed of genes, diseases, chemicals, and species. Each
gene or disease is labeled with a set of diseases (e.g., cardiovascular disease) they belong to or cause.
Transfer learning is performed on a disease prediction task between genes and disease node types.

The number of classes in the disease prediction task is 8. The graph statistics are listed in Table[T2] in
which G, D, C, and S denote genes, diseases, chemicals, and species node types. The graph structure

is described in Figure [5(c)]

For gene and chemical nodes, features of dimension 200 are generated from related PubMed papers
using word2vec (23). For diseases and species nodes, features of dimension 50 are generated based
on their graph structures using TransE (4).

A.9 Baselines

Zero-shot domain adaptation can be categorized into three groups — MMD-based methods, adver-
sarial methods, and optimal-transport-based methods. MMD-based methods (181205 29) minimize
the maximum mean discrepancy (MMD) (L1) between the mean embeddings of two distributions
in reproducing kernel Hilbert space. DAN (18)) enhances the feature transferability by minimizing
multi-kernel MMD in several task-specific layers. JAN (20) aligns the joint distributions of multiple
domain-specific layers based on a joint maximum mean discrepancy (JMMD) criterion.

Adversarial methods (9;[19) are motivated by theory in (2 [3)) suggesting that a good cross-domain
representation contains no discriminative information about the origin of the input. They learn
domain invariant features by a min-max game between the domain classifier and the feature extractor.
DANN (9) learns domain invariant features by a min-max game between the domain classifier and
the feature extractor. CDAN (19) exploits discriminative information conveyed in the classifier
predictions to assist adversarial adaptation. CDAN-E (19) extends CDAN to condition the domain
discriminator on the uncertainty of classifier predictions, prioritizing the discriminator on easy-to-
transfer examples.

Optimal transport-based methods (27) estimate the empirical Wasserstein distance (25) between two
domains and minimizes the distance in an adversarial manner. Optimal transport-based method are
based on a theoretical analysis (25) that Wasserstein distance can guarantee generalization for domain
adaptation. WDGRL (27) estimates the empirical Wasserstein distance between two domains and
minimizes the distance in an adversarial manner.

22

A.10 HGNN models

We briefly describe 6 heterogeneous graph neural networks (HGNN) models we used in the exper-
iments. MPNN (message passing neural networks) (10) is originally designed for homogeneous
graphs. We extend MPNN to process heterogeneous graphs by adding projection matrices that project
input attributes of different node types into the same feature space before running the original MPNN.
R-GCN (260) extends MPNN by specializing message matrices in each edge type, while HMPNN
specializes all transformation and message matrices in each node/edge type in MPNN. HGT (15)
extends HMPNN by adding attention modules. The attention modules have node-type-specific
key/query projection matrices and edge-type-specific key-query similarity matrices, following the
transformer architecture.

HAN (35) is a meta-path-based model who specializes parameters in each meta-path. HAN exploits
meta-path-specific attention modules to aggregate features of neighboring nodes connected by each
meta-path. Then HAN aggregates embeddings of different meta-paths with semantic-level attention
modules. MAGNN (8) is another meta-path-based HGNN model. MAGNN aggregates features of
all nearby nodes sitting on each meta-path using intra-meta-path attention modules. Then MAGNN
aggregates features of different meta-paths using inter-meta-path attention modules.

All HGNN models we describe above have layer-wise parameters. As all HGNN models have
parameters specialized in either node/edge/meta-path types, they all have distinct feature extractors
for each node types, thus, they will suffer from the under-trained target node phenomena we showed
in Section[d.2] Also, because the core intuition in KTN — namely that embeddings of any node types
at the last layer are computed using the same set of the previous layer’s intermediate embeddings (see
Section.3) — holds across all HGNN models, KTN can be applied to any HGNN models and show
greatly increased target-type accuracy.

A.11 Experimental Settings

All experiments were conducted on the same p2.xlarge Amazon EC2 instance. Here, we describe the
structure of HGNN s used in each heterogeneous graph.

Open Academic Graph: We use a 4-layered HGNN with transformation and message parameters
of dimension 128 for KTN and other baselines. Learning rate is set to 104,

PubMed: We use a single-layered HGNN with transformation and message parameters of dimen-
sion 10 for KTN and other baselines. Learning rate is set to 5 x 1072,

Synthetic Heterogeneous Graphs: We use a 2-layered HGNN with transformation and message
parameters of dimension 128 for KTN and other baselines. Learning rate is set to 104,

We implement LP, EP and KTN using Pytorch. For the domain adaptation baselines (DAN, JAN,
DANN, CDAN, CDAN-E, and WDGRL), we use a public domain adaptation library ADA ﬂ We
match the numbers of layers and dimensions of hidden embeddings across all HGNN models. We
implement MPNN and HMPNN using Pytorch. For other HGNN models (R-GCN, HAN, HGT, and
MAGNN), we use an open-source toolkit for Heterogeneous Graph Neural Network (OpenHGNN) El
Our code is publicly available E}

*https://github.com/criteo-research/pytorch-ada
“https://github.com/BUPT-GAMMA/OpenHGNN
https://github.com/minjiyoon/KTN

23

https://github.com/criteo-research/pytorch-ada
https://github.com/BUPT-GAMMA/OpenHGNN
https://github.com/minjiyoon/KTN

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Heterogeneous graph
	3.2 Heterogeneous Graph Neural Networks (HGNN)
	3.3 Problem definition

	4 Cross-Type Feature Extractor Transformations in HGNNs
	4.1 Feature extractors in HMPNNs
	4.2 Empirical gap between fs and ft
	4.3 Relationship between feature extractors in HMPNNs
	4.4 Generalized cross-type transformations for HGNNs

	5 KTN: Trainable Cross-Type Transfer Learning for HGNNs
	5.1 Algorithm

	6 Experiments
	6.1 Datasets
	6.2 Baselines
	6.3 Zero-shot transfer learning
	6.4 Generality of KTN
	6.5 Sensitivity analysis

	7 Conclusion
	8 Acknowledgement
	A Appendix
	A.1 Proof of Theorem 1
	A.2 Indirectly Connected Source and Target Node Types
	A.3 More results for Zero-shot Transfer Learning in Section 6.3
	A.4 Analysis for Baselines in Section 6.3
	A.5 More results for Generality of KTN in Section 6.4
	A.6 Effect of trade-off coefficient
	A.7 Synthetic Heterogeneous Graph Generator
	A.7.1 Toy Heterogeneous Graph in Section 4.2
	A.7.2 Sensitivity test in Section 6.5

	A.8 Real-world Dataset
	A.9 Baselines
	A.10 HGNN models
	A.11 Experimental Settings

