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Abstract—Given a large graph, how can we determine similar-
ity between nodes in a fast and accurate way? Random walk with
restart (RWR) is a popular measure for this purpose and has been
exploited in numerous data mining applications including rank-
ing, anomaly detection, link prediction, and community detection.
However, previous methods for computing exact RWR require
prohibitive storage sizes and computational costs, and alternative
methods which avoid such costs by computing approximate RWR
have limited accuracy.

In this paper, we propose TPA, a fast, scalable, and highly
accurate method for computing approximate RWR on large
graphs. TPA exploits two important properties in RWR: 1)
nodes close to a seed node are likely to be revisited in following
steps due to block-wise structure of many real-world graphs,
and 2) RWR scores of nodes which reside far from the seed
node are proportional to their PageRank scores. Based on these
two properties, TPA divides approximate RWR problem into
two subproblems called neighbor approximation and stranger
approximation. In the neighbor approximation, TPA estimates
RWR scores of nodes close to the seed based on scores of
few early steps from the seed. In the stranger approximation,
TPA estimates RWR scores for nodes far from the seed using
their PageRank. The stranger and neighbor approximations are
conducted in the preprocessing phase and the online phase,
respectively. Through extensive experiments, we show that TPA
requires up to 3.5× less time with up to 40× less memory space
than other state-of-the-art methods for the preprocessing phase.
In the online phase, TPA computes approximate RWR up to 30×
faster than existing methods while maintaining high accuracy.

I. INTRODUCTION

Measuring similarity score between two nodes in a graph

is widely recognized as a fundamental tool to analyze the

graph and has been used in various data mining tasks to gain

insights about the given graph [2], [4], [5]. Among many

methods [9], [14], [18] to identify similarities within graphs,

random walk with restart (RWR) [22], [23] has attracted con-

siderable attention due to its ability to account for the global

network structure from a particular user’s point of view [8]

and multi-faceted relationship between nodes in a graph [26].

RWR has been widely used in various applications across

different domains including ranking [11], [27], community

detection [31], [30], link prediction [3], graph similarity [16],

and anomaly detection [25]. While RWR greatly expands its

utility, it also brings a significant challenge on its computation

- RWR scores are different across different seed nodes, and

thus RWR needs to be recomputed for each new seed node.

To avoid enormous costs incurred by RWR computation, the

majority of existing works focus on approximate RWR com-

putation. BRPPR [6] improves RWR computation speed by

limiting the amount of a Web graph data they need to access.

NB-LIN [27] computes RWR approximately by exploiting

low-rank matrix approximation. BEAR-APPROX [24] uses a

block elimination approach and precomputes several matrices

including the Schur complement to exploit them in online

phase. FORA [29] combines two methods Forward Push

and Monte Carlo Random Walk with an indexing scheme.

Other methods such as FAST-PPR [20] and HubPPR [28]

narrow down the scope of RWR problem (computing RWR

scores from source to all nodes) by specifying a target node

(computing a single RWR score between a source and the

target node). However, those methods are not computation-

efficient enough in terms of time and memory considering the

amount of their sacrificed accuracy.

In this paper, we propose TPA (Two Phase Approximation

for random walk with restart), a fast, scalable, and highly

accurate method for computing approximate RWR scores on

billion-scale graphs. TPA exploits two important properties in

RWR: 1) nodes close to a seed node are likely to be revisited in

following steps due to block-wise structure of many real world

graphs, and 2) RWR scores of nodes which reside far from the

seed node are proportional to their PageRank scores. Based on

these two properties, TPA divides approximate RWR problem

into two subproblems, the neighbor approximation and the

stranger approximation. In the neighbor approximation, TPA

estimates RWR scores of nodes close to the seed based on

computation for few early steps from the seed. In the stranger

approximation, TPA computes approximate RWR scores for

nodes far from the seed using their PageRank scores. To divide

an RWR problem into two subproblems, we use an iterative

method, cumulative power iteration (CPI) which interprets an

RWR problem as propagation of scores from a seed node

across a graph. In CPI, ith iteration computes the distribution

of propagated scores among nodes after i steps from the seed

node. Based on CPI, the neighbor approximation handles

iterations computed in early phase, while the stranger ap-

proximation estimates iterations computed in later phase. The

stranger and neighbor approximation phases are conducted in
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(a) Size of preprocessed data
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(b) Preprocessing time
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(c) Online time

Fig. 1: Performance of TPA: (a) compares the size of preprocessed data computed from preprocessing methods; (b) and (c) compare the
preprocessing time and the online time, respectively, among approximate methods; Bars are omitted if the corresponding experiments run out
of memory (> 200GB). (a) TPA uses the least amount of space for preprocessed data among preprocessing methods. (b) In the preprocessing
phase, TPA provides the fastest preprocessing speed among all preprocessing methods. (c) In the online phase, TPA computes approximate
RWR scores faster than other competitors over all datasets. Details on these experiments are presented in Section IV.

the preprocessing phase and the online phase, respectively.

Through extensive experiments with various real-world

graphs, we demonstrate the superiority of TPA over existing

methods as shown in Figure 1. The main contributions of this

paper are the followings:

• Algorithm. We propose TPA, a fast, scalable, and highly

accurate algorithm for computing approximate RWR on

billion-scale graphs (Algorithms 2 and 3). TPA efficiently

approximates RWR scores in two phases: the stranger and

the neighbor approximation phases by exploiting PageR-

ank and block-wise structure of real graphs, respectively.

• Analysis. We present an analysis of TPA in terms of time

complexity and memory requirement. We provide the

theoretical approximation bounds for TPA and analyze

reasons for the better approximation performance in prac-

tice than the theoretical bound suggested (Section III).

• Experiment. We present extensive empirical evidences

for the performance of TPA using various large real-

world graphs. We compare TPA with the state-of-the-

art approximate RWR methods. Compared with other

preprocessing methods, TPA needs 3.5× less time and

40× less memory for the preprocessing phase. In the

online phase, TPA computes approximate RWR up to

30× faster than other online methods, without sacrificing

accuracy.

The code of our method and datasets used in the paper are

available at http://datalab.snu.ac.kr/tpa. The rest of the paper

is organized as follows. In Section II, we present preliminaries

on RWR and CPI. In Section III, we describe the proposed

algorithm TPA in detail along with its theoretical analysis.

After presenting our experimental results in Section IV, we

provide a review on related works in Section V and conclude

in Section VI. The symbols frequently used in this paper

are summarized in Table I and the real-world graph data

used in our experiments are summarized in Table II. A brief

TABLE I: Table of symbols.

Symbol Definition

G input graph
n number of nodes in G
m number of edges in G
s seed node (= query node, source node)
c restart probability
ε convergence tolerance
q (n× 1) seed vector
A (n× n) adjacency matrix of G

Ã (n× n) row-normalized adjacency matrix of G
rCPI (n× 1) RWR vector from CPI
pCPI (n× 1) PageRank vector from CPI
rTPA (n× 1) approximate RWR vector

using neighbor and stranger approximation
S (n× 1) starting iteration of neighbor part in CPI
T (n× 1) starting iteration of stranger part in CPI

x(i) (n× 1) interim score vector at ith iteration in CPI

rfamily (n× 1) sum of x(i) from 0 to S − 1 iterations

rneighbor (n× 1) sum of x(i) from S to T − 1 iterations

rstranger (n× 1) sum of x(i) from T to ∞ iterations

description of each dataset is in Section IV.

II. PRELIMINARIES

In this section, we briefly review PageRank [21] algorithm

which is used in our method for approximate value compu-

tation. Then, we describe our target problem RWR [22], and

Cumulative Power Iteration (CPI) which computes RWR in

an iterative matrix-vector multiplication form.

A. PageRank
PageRank [21] is a widely used algorithm to measure impor-

tance of vertices in a graph. The intuition behind PageRank is

that a vertex is important if it is linked to by many important

vertices. In other words, a vertex with large number of in-

edges is estimated as an important vertex with high PageRank

and a vertex with few in-edges is regarded as an unimportant

1133



TABLE II: Dataset statistics: S denotes the starting iteration for
the neighbor approximation and T denotes the starting iteration
for the stranger approximation.

Dataset Nodes Edges S T

Friendster1 68,349,466 2,586,147,869 4 20

Twitter1 41,652,230 1,468,365,182 4 6

WikiLink1 12,150,976 378,142,420 5 6

LiveJournal1 4,847,571 68,475,391 5 10

Pokec1 1,632,803 30,622,564 5 10

Google1 875,713 5,105,039 5 20

Slashdot1 82,144 549,202 5 15

1 http://konect.uni-koblenz.de/

vertex charged with low PageRank. PageRank scores for all

nodes are represented as a PageRank score vector p which is

defined by the following iterative equation:

p = (1− c)Ã�p+
c

n
1

where Ã is the row-normalized adjacency matrix, c is a

restart probability, and 1 is an all-ones column vector of

length n, the number of nodes. If 0 < c < 1 and Ã is

irreducible and aperiodic, p is guaranteed to converge to a

unique solution [17].

B. Random Walk with Restart

Global view of vertex importance provided by PageRank does

not reflect individual preferences. On the other hand, RWR

measures each node’s relevance w.r.t. a given seed node s in

a graph. It assumes a random surfer who traverses the edges

in the graph and occasionally restarts at node s. In each step,

the surfer walks along edges with probability 1− c or jumps

to the seed node with probability c. The iterative equation for

an RWR score vector r is defined as follows:

r = (1− c)Ã�r+ cq

where q is the seed vector with the index of the seed node

s set to 1 and others to 0. In PageRank, 1 serves the role as

a seed vector. The only difference between a random walk in

PageRank and RWR is the seed vector: with the seed vector

1, a random walk in PageRank could restart from any node

in the graph with uniform probability, while, with the seed

vector q, a random walk in RWR could restart only from the

assigned seed node.

C. CPI: Cumulative Power Iteration

Cumulative Power Iteration (CPI) interprets an RWR problem

as propagation of scores across a graph in an iterative matrix-

vector multiplication form: score c is generated from the seed

node in the beginning; at each step, scores are divided and

propagated evenly into out-edges of their current nodes with

decaying coefficient 1− c; score xv in a node v is propagated

into nv out-edged neighbors of v with value 1
nv

(1− c)xv . In

a matrix-vector multiplication form, x(i) is an interim score

vector computed from the iteration i and has scores propagated

across nodes at ith iteration as entries. When multiplied with

(1 − c)Ã�, scores in x(i) are propagated into their outgoing

neighbors, and the propagated scores are stored in x(i+1). CPI

accumulates interim score vectors x(i) to get the final result

Algorithm 1: CPI Algorithm

Input: row-normalized adjacency matrix Ã, seed nodes S,
restart probability c, convergence tolerance ε, start iteration siter,
and terminal iteration titer

Output: relevance score vector r
1: create a seed vector q from S, i.e., qs = 1/|S| for s in S

and the others are 0
2: set r = 0 and x(0) = cq
3: for iteration i = 1; i ≤ titer; i++ do
4: compute x(i) ← (1− c)(Ã�x(i−1))
5: if i ≥ siter then
6: compute r← r+ x(i)

7: end if
8: if ‖x(i)‖1 < ε then
9: break

10: end if
11: end for
12: return r

rCPI as follows:

x(0) = cq

x(i) = (1− c)Ã�x(i−1) = c
(
(1− c)Ã�

)i
q

rCPI =
∞∑
i=0

x(i) = c
∞∑
i=0

(
(1− c)Ã�

)i
q

We show the correctness of CPI for RWR computation in the

following Theorem 1.

Theorem 1: rCPI is the true solution of the iterative equation

r = (1− c)Ã�r+ cq.

Proof: The spectral radius of (1− c)Ã� is less than one

since Ã� is a column stochastic matrix, which implies that

limi→∞ c((1 − c)Ã�)iq = 0. Then rCPI is convergent, and

the following computation shows that rCPI obeys the steady

state equation.

(1− c)Ã�rCPI + cq

= (1− c)Ã�
(
c

∞∑
i=0

(
(1− c)Ã�

)i
q

)
+ cq

= c
∞∑
i=1

(
(1− c)Ã�

)i
q+ cq

= rCPI

Note that there have been similar approaches [1], [10] as

CPI to compute RWR, but they do not provide any algorithm

in matrix-vector multiplication form. Thus, in this paper, we

reinterpret the approaches as propagation of scores in an

iterative matrix-vector multiplication form and name it CPI.

In Algorithm 1, CPI accumulates only parts of the whole

iterations using two input parameters, start iteration siter and

terminal iteration titer. With siter and titer, CPI outputs the sum

of x(i) where siter ≤ i ≤ titer. To get the exact RWR from

CPI, siter and titer are set to 0 and ∞, respectively. siter and

titer are exploited in TPA (Algorithms 2 and 3 in Section III).

At first, CPI creates a seed vector q (line 1). For PageRank,

q is set to 1
n1, and for RWR, the index of the seed node s is

set to 1 and others to 0 in q. In ith iteration, scores in x(i−1)
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from the previous iteration (i−1) are propagated through Ã�

with decaying coefficient 1 − c (line 4). Then, interim score

vector x(i) is accumulated in RWR score vector r (line 6).

In Algorithm 1, CPI returns the sum of iterations from siter

to titer (line 3 and 5). Before the terminal iteration titer, CPI

could stop iterations when the score vector r is converged

with a convergence tolerance ε, and output r as a final score

vector. ‖x(i)‖1 < ε is a condition for the final score vector r
to converge (lines 8 ∼ 10). CPI could be used for PageRank

and personalized PageRank which have several seed nodes.

III. PROPOSED METHOD

CPI performs iterations until convergence (i.e., ‖x(i)‖1 < ε)
to compute the RWR score vector r. However, considerable

amount of iterations are needed for convergence and comput-

ing all the iterations is not suitable for applications which

require fast RWR computation speed. In this section, we

propose TPA which approximates RWR scores with fast speed

and high accuracy. We first divide the whole iterations in CPI

into three parts as follows:

rCPI

= rfamily + rneighbor + rstranger

= x(0) + · · ·+ x(S−1)︸ ︷︷ ︸
family part

+x(S) + · · ·+ x(T−1)︸ ︷︷ ︸
neighbor part

+x(T ) + · · ·︸ ︷︷ ︸
stranger part

S denotes the starting iteration in rneighbor, and T denotes

the starting iteration in rstranger. The family part rfamily =
x(0) + · · · + x(S−1) denotes the propagation of scores into

nearby nodes from the seed and comprises the iterations

from 0th to (S − 1)th in CPI. The neighbor part rneighbor =
x(S) + · · · + x(T−1) denotes the propagation following the

family part and comprises the iterations from Sth to (T −1)th.

Finally, the rest propagation part, the iterations from T th to

the end, is denoted as rstranger = x(T ) + · · · . S and T are

tuned to give a trade-off between accuracy and computation

time (more details in Section III-C). Based on this partition,

TPA approximates the exact RWR scores rCPI by computing

only rfamily and estimating rneighbor and rstranger.

rTPA = rfamily + r̃neighbor + r̃stranger

TPA approximates rneighbor and rstranger by the neighbor ap-

proximation phase and the stranger approximation phase, re-

spectively. In the stranger approximation phase, TPA estimates

rstranger using PageRank. In the neighbor approximation phase,

TPA approximates rneighbor using rfamily which is the only part

computed exactly. Then the neighbor approximation and the

stranger approximation are merged in the finalizing phase. The

main ideas of our proposed method are summarized as follows:

• TPA: stranger approximation approximates the

stranger part rstranger in RWR with the stranger part

pneighbor in PageRank based on the observation that the

distribution of scores in the stranger part is more affected

by the distribution of edges than location of a seed node

(Section III-A).

• TPA: neighbor approximation approximates the neigh-

bor part rneighbor using the family part rfamily taking the

Algorithm 2: Preprocessing phase of TPA

Input: row-normalized adjacency matrix Ã, restart probability c,
convergence tolerance ε, and starting iteration T of stranger part

Output: approximate stranger score vector r̃stranger

1: set seeds nodes S = {1, · · · , n} for PageRank where n is the
number of nodes

2: r̃stranger ← CPI (Ã, S, c, ε, T , ∞) # Algorithm 1

3: return r̃stranger

Algorithm 3: Online phase of TPA

Input: row-normalized adjacency matrix Ã, restart probability c,
seed node s, convergence tolerance ε, starting iteration S of
neighbor part, approximate stranger score vector r̃stranger

Output: TPA score vector rTPA

1: set a seed node S = {s} for RWR

2: rfamily ← CPI (Ã, S, c, ε, 0, S − 1) # Algorithm 1

3: r̃neighbor ← ‖rneighbor‖1
‖rfamily‖1 rfamily

4: rTPA ← rfamily + r̃neighbor + r̃stranger

5: return rTPA

advantage of block-wise structure of many real-world

graphs (Section III-B).

We describe each approximation phase with its accuracy

analysis (Section III-A and III-B), and analyze time and space

complexities of TPA (Section III-D).

A. Stranger Approximation

In the stranger approximation phase, TPA approximates the

stranger part rstranger using PageRank. PageRank score vector

pCPI is represented by CPI as follows:

pCPI

= pfamily + pneighbor + pstranger

= x′(0) + · · ·+ x′(S−1)︸ ︷︷ ︸
family part

+x′(S) + · · ·+ x′(T−1)︸ ︷︷ ︸
neighbor part

+x′(T ) + · · ·︸ ︷︷ ︸
stranger part

where x′(i) = (1 − c)Ã�x′(i−1) and x′(0) = c
n1. Note that

the only difference between rCPI and pCPI is the seed vectors,

x(0) and x′(0). Then, the stranger part rstranger in RWR is

approximated by the stranger part pstranger in PageRank.

r̃stranger = pstranger

Intuition. The amount of scores propagated into each node

are determined not only by the number of in-edges of each

node, but also by the distance from the seed node. Nodes

with many in-edges have many sources to receive scores, while

nodes close to the seed node take in high scores since scores

are decayed by factor (1−c) as iteration progresses. However,

scores (x(T ),x(T+1), · · · ) propagated in the stranger iterations

are mainly determined by the number of in-edges since nodes

receiving scores in the stranger iterations are already far

from the seed, and thus the relative difference between their

distances from the seed is too small to be considered. Note that

PageRank score vector pCPI presents the distribution of scores

determined solely by the distribution of edges. This is the main

motivation for the stranger approximation: approximate the

stranger part rstranger in RWR with pstranger in PageRank. Since

pstranger, the stranger part in PageRank is invariant regardless
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of which node is selected as a seed node, TPA precomputes

r̃stranger in the preprocessing phase (Algorithm 2).

Theoretical analysis. We show the accuracy bound of the

stranger approximation in Lemma 1.

Lemma 1 (Accuracy bound for r̃stranger): Let rstranger be the

exact stranger part in CPI, r̃stranger be the approximate stranger

part via the stranger approximation, and T be the starting itera-

tion of the stranger part. Then ‖rstranger−r̃stranger‖1 ≤ 2(1−c)T .

Proof: rstranger and r̃stranger are represented as follows:

rstranger = x(T ) + x(T+1) + · · ·
r̃stranger = x′(T ) + x′(T+1) + · · ·

Then, ‖rstranger − r̃stranger‖1 is bounded as follows:

‖rstranger − r̃stranger‖1 = ‖(x(T ) + · · · )− (x′(T ) + · · · )‖1
≤

∞∑
i=T

‖x(i) − x′(i)‖1

where the interim score vectors x(i) and x′(i) at i-th iteration

in CPI are represented as follows:

x(i) = (1− c)Ã�x(i−1) = c(1− c)i(Ã�)iq

x′(i) = (1− c)Ã�x′(i−1) = c(1− c)i(Ã�)ib
where q is s-th unit vector, and b = 1

n1. Suppose (Ã�)i

is represented by
[
c
(i)
1 , · · · , c(i)n

]
where c

(i)
j is j-th column

of the matrix (Ã�)i, and n is the number of nodes. Then,

x(i) − x′(i) is represented as follows:

x(i) − x′(i) = c(1− c)i(Ã�)i(q− b)

= c(1− c)i(Ã�)i(− 1

n
,− 1

n
, · · · , n− 1

n︸ ︷︷ ︸
s-th entry

,− 1

n
, · · · )�

= c(1− c)i(− 1

n
c
(i)
1 · · ·+ n− 1

n
c(i)s · · · − 1

n
c(i)n )

=
c(1− c)i

n

∑
j �=s

(c(i)s − c
(i)
j )

Then, ‖x(i) − x′(i)‖1 is bounded by the following inequality:

‖x(i) − x′(i)‖1 =
c(1− c)i

n
‖
∑
j �=s

(c(i)s − c
(i)
j )‖1

≤ c(1− c)i

n

∑
j �=s

‖c(i)s − c
(i)
j ‖1

≤ c(1− c)i

n
× 2(n− 1) ≤ 2c(1− c)i

where in the second inequality we use the fact that ‖c(i)j ‖1 = 1

and ‖c(i)s − c
(i)
j ‖1 ≤ ‖c(i)s ‖1 + ‖c(i)j ‖1 = 2, since Ã� as well

as (Ã�)i are column stochastic. Then, ‖rstranger− r̃stranger‖1 is

bounded as follows:

‖rstranger − r̃stranger‖1 ≤
∞∑
i=T

‖x(i) − x′(i)‖1

≤
∞∑
i=T

2c(1− c)i = 2(1− c)T

(a) Ã� on Slashdot (b) (Ã�)3 on Slashdot

(c) (Ã�)5 on Slashdot (d) (Ã�)7 on Slashdot

Fig. 2: Distribution of nonzeros in (Ã�)i on Slashdot dataset: as i
increases, (Ã�)i has more nonzeros with denser columns cs and cj .
Colorbars present the number of nonzeros.

Real-world graphs. From the proof of Lemma 1, given a

seed node s, the L1 difference ‖c(i)s − c
(i)
j ‖1 between column

c
(i)
s and other columns c

(i)
j of a matrix (Ã�)i (i = T, T +

1, · · · ) is a determining factor for accuracy of the stranger

approximation. Considering that (Ã�)i is a column stochastic

matrix, and thus, its columns c
(i)
s and c

(i)
j are unit vectors

with all non-negative entries, ‖c(i)s − c
(i)
j ‖1 becomes large

(close to its maximum 2) when c
(i)
s and c

(i)
j have their nonzero

values in the different indices from each other. Note that Ã
is a row-normalized adjacency matrix of a real-world graph

with low density [15]. As raising the matrix Ã� to the ith
power, (Ã�)i tends to be a denser matrix with denser column

vectors. We present this tendency in the Slashdot dataset in

Figure 2. Then, the dense unit vectors c
(i)
s and c

(i)
j are likely

to have nonzero values in the same indices resulting a small

value of ‖c(i)s − c
(i)
j ‖1. To show this tendency in real-world

graphs, we estimate the number of nonzeros in (Ã�)i and the

average value for Ci =
1
n

∑
j �=s‖c(i)s −c

(i)
j ‖1 with 30 random

seeds s on the Slashdot and Google datasets. In Figure 3,

as i increases, the number of nonzeros increases while Ci

decreases. This shows that the stranger approximation which

approximates the stranger iterations x(i) with high i values

(i ≥ T ) would lead to smaller errors in practice than the

bound suggested in Lemma 1. However, setting T , the starting

iteration of the stranger approximation, with too high values

leads to high errors in TPA since high values for T lead to

high errors in the neighbor approximation. The reasons will

be discussed concretely in Section III-C. Through extensive

experiments (Section IV-C), we present the high accuracy of

the stranger approximation in real-world graphs.
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B. Neighbor Approximation
In the online phase, the remaining parts rfamily and rneighbor

need to be computed based on an assigned seed node.

Even though we need to compute only T iterations

(x(0), · · · ,x(T−1)) in the online phase with the help of

the stranger approximation, calculating T iterations are still

demanding in terms of running time. To handle this issue,

TPA introduces the second approximation phase, the neighbor

approximation. The neighbor approximation reduces running

time further by limiting computation to the family part rfamily,

and estimates the neighbor part rneighbor by scaling rfamily as

follows:

r̃neighbor =
‖rneighbor‖1
‖rfamily‖1 rfamily =

(1− c)S − (1− c)T

1− (1− c)S
rfamily

With restart probability c, the L1 norms of rfamily and rneighbor

only depend on S and T , the starting numbers of the neigh-

bor iterations and the stranger iterations, respectively (see

Lemma 2).

Lemma 2 (L1 norms of rfamily and rneighbor): ‖rfamily‖1 and

‖rneighbor‖1 are 1−(1−c)S and (1−c)S−(1−c)T , respectively.

Proof: The family part rfamily and the neighbor part

rneighbor are represented as follows:

rfamily = x(0) + x(1) + · · ·+ x(S−1)

rneighbor = x(S) + x(S+1) + · · ·+ x(T−1)

where x(i) = c(1−c)i(Ã�)iq. Then ‖rfamily‖1 and ‖rneighbor‖1
are represented as follows:

‖rfamily‖1 = ‖x(0) + x(1) + · · ·+ x(S−1)‖1 =
S−1∑
i=0

‖x(i)‖1

‖rneighbor‖1 = ‖x(S) + x(S+1) + · · ·+ x(T−1)‖1 =
T−1∑
i=S

‖x(i)‖1

Note that all entries of x(i) are non-negative. Since Ã� is a

column stochastic matrix, (Ã�)i is also a column stochastic

matrix. Hence, ‖(Ã�)iq‖1 = ‖q‖1 = 1 and ‖x(i)‖1 = ‖c(1−
c)i(Ã�)iq‖1 = c(1− c)i. Then ‖rfamily‖1 and ‖rneighbor‖1 are

written as follows:

‖rfamily‖1 =
S−1∑
i=0

c(1− c)i = 1− (1− c)S

‖rneighbor‖1 =

T−1∑
i=S

c(1− c)i = (1− c)S − (1− c)T

In the online phase, TPA computes rfamily at first, and esti-

mates rneighbor based on the neighbor approximation. Finally,

TPA merges rfamily, r̃neighbor and r̃stranger, and computes the

approximate RWR score vector rTPA (Algorithm 3).

Intuition. In many real-world graphs, nodes inside a com-

munity are densely inter-connected to each other than to nodes

in other communities. This is an important property of real-

world graphs called block-wise, community-like structure and

widely exploited in graph mining [25], [27]. Our intuition for

the neighbor approximation comes from this property. Based

on block-wise structure, scores started from one community

are likely to be propagated into nodes in the same community
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Fig. 3: Number of nonzeros and Ci of (Ã�)i: as i increases, the
number of nonzeros increases while Ci decreases.

repeatedly for a while. Then we could assume that the nodes

which receive scores in the early iterations (the family part)

would receive scores again in the following iterations (the

neighbor part). Furthermore, the nodes which have more in-

edges thus receive more scores in the early iterations would

receive more scores than other nodes in the following itera-

tions. Note that scores propagated in the following iterations

would be smaller than scores in the early iterations since scores

are decayed by the decaying coefficient (1 − c) as iterations

progress. Based on this assumption, we maintain ratios of

scores among nodes in rfamily and scale the scores with
‖rneighbor‖1
‖rfamily‖1 to reflect the smaller amount of scores in rneighbor.

This is the main motivation for the neighbor approximation

based on block-wise structure of real-world graphs.

Theoretical analysis. We show the accuracy bound for the

neighbor approximation in Lemma 3, and the total accuracy

bound for our proposed method TPA in Theorem 2.

Lemma 3 (Accuracy bound for r̃neighbor): Let rneighbor be the

exact neighbor part in CPI, and r̃neighbor be the approximate

neighbor part via the neighbor approximation. Then ‖rneighbor−
r̃neighbor‖1 ≤ 2(1− c)S − 2(1− c)T .

Proof: For brevity, let Ã� → Ā, cq → q̄ and rfamily =
q̄+(1−c)Āq̄+· · ·+((1−c)Ā)S−1q̄→ f . We set T = kS for

simplicity of proof. Then rneighbor and r̃neighbor are represented

as follows:

rneighbor =((1− c)Ā)Sq̄+ · · ·+ ((1− c)Ā)2S−1q̄

+ ((1− c)Ā)2Sq̄+ · · ·+ ((1− c)Ā)3S−1q̄

+ · · ·
+ ((1− c)Ā)(k−1)Sq̄+ · · ·+ ((1− c)Ā)kS−1q̄

=((1− c)Ā)Sf + · · ·+ ((1− c)Ā)(k−1)Sf

r̃neighbor =
‖rneighbor‖1
‖rfamily‖1 rfamily

=
(1− c)S − (1− c)T

1− (1− c)S
f

Note that
(1−c)S−(1−c)T

1−(1−c)S
could be expressed as follows:

(1− c)S − (1− c)T

1− (1− c)S
=

(1− c)S(1− (1− c)(k−1)S)

1− (1− c)S

= (1− c)S + · · ·+ (1− c)(k−1)S
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Then r̃neighbor is presented as follows:

r̃neighbor = (1− c)Sf + · · ·+ (1− c)(k−1)Sf

Then rneighbor − r̃neighbor is written as follows:

rneighbor − r̃neighbor

= (1− c)S(ĀSf − f) + (1− c)2S(Ā2Sf − f)

+ · · ·
+ (1− c)(k−1)S(Ā(k−1)Sf − f)

=

k−1∑
i=1

(1− c)iS(ĀiSf − f)

Hence, ‖rneighbor − r̃neighbor‖1 is bounded as follows:

‖rneighbor − r̃neighbor‖1 ≤
k−1∑
i=1

(1− c)iS‖(ĀiSf − f)‖1

≤
k−1∑
i=1

(1− c)iS(‖ĀiSf‖1 + ‖f‖1)

= 2‖f‖1
k−1∑
i=1

(1− c)iS

= 2
(1− c)S(1− (1− c)(k−1)S)

1− (1− c)S
‖f‖1

= 2
(1− c)S − (1− c)kS

1− (1− c)S
(1− (1− c)S)

= 2(1− c)S − 2(1− c)T

Note that ‖ĀiSf‖1 = ‖f‖1 since Ā is a column stochastic

matrix; thus, ĀiS is also a column stochastic matrix .

Real-world graphs. From the proof of Lemma 3, ‖(ĀiSf−
f)‖1 (i = 1, · · · , k−1) is a decisive factor for the accuracy of

the neighbor approximation. f has the distribution of scores

among nodes after the family iterations (x(0), · · · ,x(S−1)).

Multiplying f with ĀS means that scores in f are propagated

S steps further across a given graph. As shown in Figure 4, if

the graph has an ideal block-wise, community-wise structure,

scores in f would be mainly located in nodes around a seed

node, which belong to the same community as the seed. During

the next S steps, scores in f would be propagated into the

nodes belonging to the same community again, without leaking

into other communities. Then, the distribution of scores in

ĀSf would be similar to that in f . To show that block-wise

structure of real-world graphs also brings the similar effects,

we compare ‖(ĀSf − f)‖1 of real-world graphs (WikiLink,

LiveJournal, Pokec, Google, and Slashdot) with that of random

graphs. Random graphs have the same numbers of nodes and

edges as the corresponding real-world graphs, while having the

random distribution of edges rather than block-wise structure.

Restart probability c is set to 0.15 and S is set to 5 for all the

datasets as described in Table II. As shown in Figure 5, real-

world graphs have lower ‖(ĀSf − f)‖1 values than random

graphs across all datasets. This means that the distribution

of scores (ĀSf ) after S steps is similar to the previous

distribution (f ) in real-world graphs with the help of block-

wise structure. By this process, the neighbor approximation

succeeds in achieving high accuracy for real-world graphs.

Fig. 4: Neighbor approximation with an ideal block-wise structure:
with an ideal block-wise structure, f and ĀSf have similar distribu-
tions.

��7'&�6:';+ ��'<,.=�6:';+

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Slashdot

Google

Pokec
LiveJournal

WikiLink

L1
 e

rro
r

Fig. 5: Comparing ‖(ĀSf − f)‖1 between real-world and random
graphs: ĀSf and f have closer values in real-world graphs with
block-wise structures than those in random graphs across all datasets.

Based on Lemmas 1 and 3, we present the total accuracy

bound for TPA in Theorem 2. Note that TPA achieves higher

accuracy in practice than the bound suggested in Theorem 2

as discussed in this section. We show high accuracy of TPA

in real-world graphs experimentally in Section IV-C.

Theorem 2 (Accuracy bound for TPA): Let rCPI be the exact

RWR score vector from CPI, and rTPA be the approximate

RWR score vector from TPA. Then ‖rCPI−rTPA‖1 is bounded

as follows:

‖rCPI − rTPA‖1 ≤ 2(1− c)S

Proof: Note that rCPI and rTPA are represented as follows:

rCPI = rfamily + rneighbor + rstranger

rTPA = rfamily + r̃neighbor + r̃stranger

Then ‖rCPI − rTPA‖1 is bounded as the following inequality:

‖rCPI − rTPA‖1 = ‖rneighbor − r̃neighbor + rstranger − r̃stranger‖1
≤ ‖rneighbor − r̃neighbor‖1 + ‖rstranger − r̃stranger‖1
≤ 2(1− c)T + 2(1− c)S − 2(1− c)T

= 2(1− c)S

Note that ‖rneighbor − r̃neighbor‖1 ≤ 2(1 − c)S − 2(1 − c)T by

Lemma 3 and ‖rstranger− r̃stranger‖1 ≤ 2(1− c)T by Lemma 1.

According to Theorem 2, the accuracy of TPA is bounded by

S, the starting iteration of the neighbor approximation. Note

that S also determines the scope of rfamily, thus the amount of

computation needed in the online phase. TPA trades off the

accuracy and the online computation cost using S.
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C. Selecting S and T

We set the starting iteration S of the neighbor approximation

considering accuracy and speed since S gives a tradeoff

between them. If we set S to a large value, computation time

for rfamily in the online phase escalates sharply. Otherwise,

when we set S to a small value, error increases since a portion

of exact computation decreases.

When we set the starting iteration T of the stranger approx-

imation to a small value, error increases sharply. Intuitively,

with small T , the effect of PageRank becomes higher than that

of a seed node. Theoretically, we discussed the reason with

the error bound of the stranger approximation in Section III-A.

Otherwise, when we choose a large T , scores of nodes far

from the seed, the latter part of rneighbor such as x(T−1) and

x(T−2), are estimated by the family part rfamily in the neighbor

approximation. Nodes far from the seed are likely to belong to

different communities from that of the seed node. Considering

that the neighbor approximation assumes that nodes visited

in the family part and in the neighbor part belong to the

same community by block-wise structure of real-world graphs,

errors for the neighbor approximation increase significantly.

Thus we need to choose T with a value which minimizes the

total errors for TPA. We show the effects of S and T on the

speed and accuracy of TPA in Section IV-D.

D. Complexity analysis for TPA

We analyze the time and space complexities of TPA. First, we

evaluate the time complexity of CPI since TPA is based on

CPI.

Lemma 4 (Time Complexity of CPI): At each iteration, CPI

takes O(m) where m is the number of edges in a given graph.

In total, CPI takes O(m log(1−c)(
ε
c )) time where log(1−c)(

ε
c )

indicates the number of iterations needed for convergence.

Proof: CPI computes x(i) = (1− c)(Ã�x(i−1)) for each

iteration, and takes O(m) time where m is the number of

nonzeros in Ã. CPI stops the iteration with convergence when

‖x(i)‖1 = c(1− c)i < ε. Then the number of iterations to be

converged is log(1−c)(
ε
c ) and the total computation time is

O(m log(1−c)(
ε
c )).

Theorem 3 (Time Complexity of TPA): TPA takes

O(m log(1−c)(
ε
c )) in the preprocessing phase and O(mS)

in the online phase where S is the starting iteration of the

neighbor approximation.

Proof: In the preprocessing phase, TPA computes PageR-

ank using CPI which takes O(m log(1−c)(
ε
c )) time. In the

online phase, TPA computes rfamily which runs S iterations in

CPI; thus, it requires O(mS) time.

According to Theorem 3, the preprocessing cost and the online

cost of TPA mainly depend on the number of iterations

conducted in CPI. Since only the family part is computed in

the online phase, TPA demands much smaller costs compared

to other state-of-the-art methods as shown in Figure 1.

Theorem 4 (Space complexity of TPA): TPA requires O(n+
m) memory space where n and m are the numbers of vertices

and edges, respectively.

Proof: TPA requires O(n) memory space for an approx-

imate stranger score vector r̃stranger and O(m) memory space

for a row-normalized adjacency matrix Ã.

Theorem 4 indicates that the space cost of TPA mainly

depends on n + m, node and edge sizes of the given graph.

As shown in Figure 1(a), TPA requires reasonable memory

space, and thus, succeeds in processing billion-scale graphs.

IV. EXPERIMENTS

In this section, we experimentally evaluate the performance

of TPA compared to other approximate RWR methods. We

aim to answer the following questions:

• Q1 Performance of TPA. How much does TPA enhance

the computational efficiency compared with its competi-

tors? (Section IV-B)

• Q2 Accuracy of TPA. How much does TPA reduce

the approximation error in real-world graphs from the

theoretical error bound? (Section IV-C)

• Q3 Effects of parameters. How does the starting itera-

tion S of the neighbor approximation affect the accuracy

and speed of TPA? How does the starting iteration T of

the stranger approximation affect the accuracy of TPA?

(Section IV-D)

A. Setup
1) Datasets
We use 7 real-world graphs to evaluate the effectiveness and

efficiency of our method. The datasets and their statistics are

summarized in Table II. Among them, Friendster, Twitter,

LiveJournal, Pokec, and Slashdot are social networks, whereas

WikiLink and Google are hyperlink networks.

2) Environment
All experiments are conducted on a workstation with a sin-

gle core Intel(R) Xeon(R) CPU E5-2630 @ 2.2GHz and

200GB memory. We compare TPA with five state-of-the-

art approximate RWR methods, BRPPR [6], NB-LIN [27],

BEAR-APPROX [24], HubPPR [28], and FORA [29], all of

which are described in Section V. All these methods including

TPA choose an implementation showing a better performance

between MATLAB and C++. We set the restart probability c
to 0.15. The starting iteration S of the neighbor approximation

and the starting iteration T of the stranger approximation is

set differently for each graph as noted in Table II to gain

the best performance of TPA. The convergence tolerance

ε for CPI is set to 10−9. For each dataset, we measure

the average value for 30 random seed nodes. To show the

best performance, parameters of each competitor are set as

follows: the drop tolerance of BEAR-APPROX and NB-LIN

is set to n−1/2 and 0, respectively; the threshold to expand

nodes in RPPR and BRPPR is set to 10−4; parameters for

the result quality guarantee of HubPPR and FORA are set

to values (1/n, 1/n, 0.5) as suggested in their papers [28],

[29]. We obtained the source codes of HubPPR from the

authors, which are optimized to compute an approximate RWR

score vector. By querying all nodes in a graph as the target

nodes, HubPPR computes an approximate RWR score vector.
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Fig. 6: Recall of top-k RWR vertices: except NB-LIN, all methods show similarly high recall on the four datasets. Note that TPA requires
less computation time and memory space than other methods, while maintaining the similar recall. Lines are omitted if corresponding
experiments run out of memory (> 200GB).

BePI [12], the state-of-the-art exact RWR method, is used to

provide the ground truth RWR values in all experiments. We

compare the computational efficiency between TPA and BePI

in Appendix A.

B. Competitors

Under the environmental settings described above, in the

preprocessing phase, we estimate the preprocessing time and

the size of preprocessed data of each method. In the online

phase, we estimate the computation time and the accuracy of

approximate RWR scores computed from each method. From

Figures 1 to 6, TPA runs faster than other methods, while

requiring less memory space and maintaining high accuracy.

1) Speed

We examine the running time of TPA in the preprocessing

phase and the online phase, respectively. Running time is

measured in wall-clock time. In the preprocessing phase,

TPA computes PageRank using CPI to get r̃stranger; BEAR-

APPROX precomputes several matrices required in the on-

line phase; NB-LIN computes low-rank approximation and

inversion of some small size matrices; HubPPR precomputes

and indexes auxiliary information for selected hub nodes that

are often involved in RWR processing; FORA precomputes a

number of random walks from nodes, and stores the destina-

tion of each walk. As shown in Figure 1(b), TPA performs

preprocessing faster than other preprocessing methods by up

to 3.5×. Even though FORA shows relatively fast computation

speed in the preprocessing phase, it requires up to 40× larger

memory space and up to 30× more online computation time

than TPA. Note that the preprocessing phase is executed only

once for a graph and the online phase is executed every

time for a new seed node. Then the superior performance of

TPA for online computation has more significant effects in

terms of total computation efficiency. Under 200GB memory

capacity, BEAR-APPROX and NB-LIN fail to preprocess the

datasets from Pokec and WikiLink, respectively, due to out

of memory error. In the online phase, TPA computes an

approximate RWR vector up to 30× faster than other methods.

Although BEAR-APPROX takes similar online time as TPA

in the Google dataset, BEAR-APPROX takes 5923× more

preprocessing time than TPA does for the same dataset. On

the contrary, TPA maintains superior speed compared to all

other methods in both phases.

2) Memory Usage

To compare memory efficiency, we measure how much mem-

ory each method requires for the preprocessed data. As shown

in Figure 1(a), compared with other preprocessing methods,

TPA requires up to 40× less memory space across all the

datasets. This result shows the superior scalability of TPA.

Under 200GB memory capacity, BEAR-APPROX and NB-

LIN consume a significant memory space, thus, are feasible

only on the small datasets (LiveJournal, Pokec, Google, and

Slashdot). Although HubPPR and FORA succeed in prepro-

cessing billion-scale graphs, they require a significant memory

space for the preprocessed data. Note that HubPPR and FORA

trade off the online computation time against the size of

preprocessed data [28], [29]. Thus, when they manipulate the

size of preprocessed data smaller than the memory presented

in Figure 1(a), they would require more online computation

time than the one presented in Figure 1(c) which is already

up to 30× more than TPA.

3) Accuracy

In most applications of RWR, the typical approach is to

return the top-k ranked vertices of RWR vector. For instance,

in Twitter’s ”Who to Follow” recommendation service [7],

the top-500 ranked users in RWR will be recommended.

Therefore, it is important to measure the accuracy of the top-

k results to examine the accuracy of an approximate RWR

vector. We first calculate the exact top-k vertices using BePI,

then evaluate the top-k results of each method by measuring

their recall with respect to the exact top-k. For brevity, we

show the result on Twitter, WikiLink, Pokec, and Slashdot;

results on other graphs are similar. As shown in Figure 6,

all methods except NB-LIN provide high recall around 0.99
across all datasets. Note that as shown in Figure 1, TPA

requires less computation time and smaller memory space than

other methods, while maintaining the similar accuracy.
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TABLE III: Error statistics: we measure L1 norm errors of the neighbor approximation r̃neighbor, the stranger approximation r̃stranger, and the final
approximate RWR score vector rTPA with regard to the exact score vectors rneighbor, rstranger, and rCPI, respectively. Then we compare the L1
norm errors with their theoretical error bounds, respectively. The theoretical error bounds for r̃neighbor, r̃stranger and rTPA are 2(1−c)S−2(1−c)T ,
2(1− c)T , and 2(1− c)S , respectively. Percentage denotes the ratio of L1 norm error in real-world graphs with regard to the theoretical error
bound. S denotes the starting iteration of the neighbor approximation and T denotes the starting iteration of the stranger approximation. Both
neighbor approximation and stranger approximation lower errors significantly from their theoretical error bounds by exploiting characteristics
of real-world graphs.

Dataset Neighbor Approximation Stranger Approximation TPA

Theoretical
bound: (A)

Actual
error:

(B)

Percentage:
(B/A)

Theoretical
bound: (A)

Actual
error:

(B)

Percentage:
(B/A)

Theoretical
bound: (A)

Actual
error:

(B)

Percentage:
(B/A)

Slashdot 0.7127 0.3367 47.24% 0.1747 0.0861 49.27% 0.8874 0.0505 5.69%
Google 0.8099 0.3377 41.70% 0.0775 0.0451 58.19% 0.8874 0.1805 20.33%
Pokec 0.4937 0.3041 61.59% 0.3937 0.1011 25.68% 0.8874 0.1946 21.93%

LiveJournal 0.4937 0.2711 54.91% 0.3937 0.1456 36.98% 0.8874 0.2555 28.79%
WikiLink 0.1331 0.0739 55.51% 0.7543 0.2097 27.80% 0.8874 0.2370 26.71%
Twitter 0.2897 0.1953 67.43% 0.7543 0.0349 4.63% 1.0440 0.1015 9.73%

Friendster 0.9665 0.4479 46.34% 0.0775 0.0419 54.06% 1.0440 0.0675 6.46%

C. TPA in Real-world Graphs

In Section III, we analyze the error bounds of the neighbor

approximation and the stranger approximation theoretically

and elaborate how the approximations achieve lower errors

than the theoretical bounds in real-world graphs. The stranger

approximation uses the increased density of adjacency matri-

ces of real-world graphs as the matrices are raised to the ith
power. With the help of block-wise structure of real-world

graphs, the neighbor approximation results in low error in

practice. In Table III, we compare the errors of the neighbor

approximation and the stranger approximation in real-world

graphs with their theoretical bounds, respectively. S and T
used in each dataset are described in Table II. The neighbor

approximation lowers the error up to 42% and the stranger

approximation lowers the error up to 5% from their theoret-

ical error bounds, respectively. This results show that both

approximations exploit the characteristics of real-world graphs

effectively. One interesting point is that the total error of TPA

is significantly lower than the sum of errors of the neighbor

approximation and the stranger approximation. E.g., in the

Slashdot dataset, the neighbor and stranger approximations

lower errors to the half of the suggested theoretical bounds,

but the total experimental error of TPA decreases to 6%
of its theoretical upper bound. This presents the stranger

approximation and the neighbor approximation complement

each other effectively. The neighbor approximation could not

consider nodes which are not visited in the family iterations

since it approximates the neighbor iterations only based on

the family iterations. On the other hand, the stranger approx-

imation could not consider the effect of seed node since it

precomputes PageRank in the preprocessing phase without any

information about which node would be a seed node. Merged

with the stranger approximation, the neighbor approximation

acquires information about nodes across whole graphs, stored

in PageRank. On the other hand, merged with the neighbor

approximation, the stranger approximation has a chance to put

more priority on the seed node. TPA compensates the weak

points of each approximations successfully.

D. Effects of Parameters
We discuss the effects of two parameters S and T in this

subsection. We first investigate the effects of S, the starting

iteration of the neighbor approximation, on the performance of

TPA. We measure online computation time and L1 norm error

of TPA varying S. During this experiment, T is fixed to 10.

As shown in Figure 7, as S increases, online time increases

sharply while L1 norm error decreases since a portion of the

exact computation rfamily increases. Thus, S is selected to a

proper number considering the tradeoff between accuracy and

running time of TPA.

Next, we examine the effects of T , the starting iteration

of the stranger approximation, on the accuracy of TPA. We

measure L1 norm errors of the neighbor approximation, the

stranger approximation, and TPA, respectively, varying T .

Note that S is fixed to 5 during this experiment. In Figure 8, as

T increases, L1 error of the neighbor approximation increases,

that of the stranger approximation decreases, and that of

TPA decreases at first and then rebounds from T = 10.

With small T , the stranger approximation applies to nodes

close to the seed, then, the nodes are estimated by their

PageRank scores and the effects of their close distances from

the seed are ignored. This leads to high L1 norm error of the

stranger approximation. On the other hand, with large T , the

neighbor approximation applies to nodes far from the seed.

The nodes which reside far from the seed are likely to belong

to different communities from that of the seed. However, by

the neighbor approximation, such nodes are estimated as the

same community members as the seed. Then, L1 norm error

of the neighbor approximation becomes high. Thus T is set

to a value which minimizes the total L1 norm error of TPA.

V. RELATED WORKS

In this section, we review previous approximate methods

for RWR. To avoid enormous costs incurred by RWR compu-

tation, many efforts have been devoted to estimating RWR in

a cost-efficient way while sacrificing little accuracy. Gleich et

al. [6] introduced boundary restricted personalized PageRank
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(a) Online time vs. L1 norm of error
on the LiveJournal dataset
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Fig. 7: Effects of S: with small S, TPA runs fast with high L1 norm
error. On the other hand, with large S, TPA takes long computation
time with low L1 error.
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Fig. 8: Effects of T : as T increases, L1 norm error of the neighbor
approximation (NA) increases, that of the stranger approximation
(SA) decreases, and that of TPA decreases at first and then rebounds
from T = 10.

(BRPPR) which improves speed by limiting the amount of

graph data that need to be accessed. BRPPR iteratively divides

the vertices of a graph into an active and an inactive set.

At each iteration, the set of active vertices is expanded to

include more vertices that are likely to have a high RWR

score. BRPPR expands nodes until the total rank on the frontier

set of nodes is less than κ. Proposed by Tong et al. [27],

NB-LIN exploits linear correlations across rows and columns

of the adjacency matrix in many real-world graphs. NB-LIN

computes low-rank approximation of the adjacency matrix and

uses it to estimate RWR score vector based on the Sherman-

Morrison lemma. NB-LIN divides whole computation into

the preprocessing phase and online phase, and yields faster

response time in the online phase. Shin et al. extended their

exact RWR method BEAR [13], [24] to an approximate

RWR method BEAR-APPROX which drops non-zero entries

whose absolute value is smaller than the drop tolerance in

its preprocessed matrix. Forward Push [1] computes RWR by

propagating residuals across a graph until all the residuals

become smaller than a given threshold. Proposed by Wang

et al. [29], FORA first performs Forward Push with early

termination, and subsequently runs random walks. FORA

utilizes Forward Push to significantly cut down the number

of required random walks while satisfying the same result

quality guarantees of random walks. FORA precomputes

a number of random walks in the preprocessing phase to

further improve computation efficiency. Other methods such

as FAST-PPR [20], BiPPR [19] and HubPPR [28] narrow

down the scope of RWR problem by specifying a target

node. BiPPR processes an RWR query through a bi-directional

search on the input graph. HubPPR precomputes indexes in

the preprocessing phase and approximates RWR with the

help of precomputed indexes in the bi-directional way. We

compare our method with HubPPR since HubPPR is the most

recent study with the best performance among bi-directional

methods [28]. Our proposed TPA outperforms all methods

described above by providing a better cost-efficiency.

VI. CONCLUSION

In this paper, we propose TPA, a fast and accurate method

for computing approximate RWR. TPA is based on cumulative

power iteration (CPI) which interprets RWR problem as

propagation of scores from a seed node across a graph. To

avoid long computation time, TPA divides the whole itera-

tions of CPI into three parts (family, neighbor, and stranger

parts), and estimates the neighbor part and the stranger part

using our proposed approximation methods called neighbor

approximation and stranger approximation, respectively. With

the help of two approximation phases, TPA quickly computes

only the family part in the online phase, and then approximates

RWR with high accuracy. Our evaluation shows that TPA

outperforms other state-of-the-art methods in terms of speed

and memory-efficiency, without sacrificing accuracy. Future

works include extending TPA into a disk-based RWR method

to handle huge, disk-resident graphs.
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APPENDIX

A. Comparison with BePI
BePI [12] is the state-of-the-art exact RWR method which pre-

computes several matrices required by the online phase in the

preprocessing phase and computes RWR scores by exploiting

the precomputed matrices in the online phase. As shown in

Figure 9, TPA and BePI take the similar preprocessing time,

while TPA is up to 96× faster than BePI in the online phase.

Considering that the preprocessing phase is executed only

once for a graph and the online phase is executed everytime

for a new seed node, the superior performance of TPA for

online computation brings significant advantages for users who

put more priority on speed than accuracy. Moreover, TPA

requires up to 168× less memory space for preprocessed data

than BePI. Note that while TPA outperforms BePI in terms

of computation time and memory usage, TPA computes the

approximate RWR scores and BePI results in the exact RWR

scores.
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