

Then how can we detect anomalies on dynamic graphs?

Anomalies in Dynamic Graphs

Definition 1 (Structure Change) If a node *u* changes the destination of Δm of its out-edges from previous neighbors $V_1, \ldots, V_{\Lambda m}$ to new neighbors $V'_1, \ldots, V'_{\Lambda m}$, we call the change a structure change of size Δm .

With abnormally large Δm , a structure change $A_{w}(i, j)$ is the edge weight from node *i* to node *j*. becomes an **AnomalyS**. To detect AnomalyS, $b_w(i)$ is m_i/m , where m_i denotes the total edge weight we need to focus on the existence of edges between of out-edges of node *i*, and *m* denotes the total edge two nodes, rather than the number of occurrences of weight of the graph. edges between two nodes.

Fast and Accurate Anomaly Detection in Dynamic Graphs with a Two-Pronged Approach Minji Yoon, Bryan Hooi, Kijung Shin, and Christos Faloutsos

Carnegie Mellon University

Definition 2 (Edge Weight Change) If a node *u* adds/subtracts *Am* out-edges to neighbor node v, we call the change an edge weight change of size Δm .

With abnormally large Δm , an edge weight change becomes an **AnomalyW**. In contrast to AnomalyS, we focus on the number of occurrences of each edge, rather than only the presence or absence of an edge.

Node Score Functions for Detecting **AnomalyS and AnomalyW**

Define the row-normalized unweighted adjacency matrix A_s , a starting vector b_s which is an all- $\frac{1}{m}$ vector of length *n* and the damping factor *c*. (*n* denotes the number of nodes)

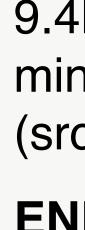
Definition 3 (ScoreS) ScoreS node score vector p_s is defined by the following iterative equation: $p_{s} = cA^{T}_{s}p_{s} + (1 - c)b_{s}$

To deal with edge weight in AnomalyW, we use the weighted adjacency matrix A_w instead of A_s . We introduce an out-degree proportional starting vector b_{w} , (i.e. setting the initial scores of each node

proportional to its outdegree).

Definition 4 (ScoreW) ScoreW node score vector p_w is defined by the following iterative equation: $p_{w} = cA^{T}_{w}p_{w} + (1 - c)b_{w}$

We estimate changes in ScoreS/W induced by a structure change/an edge change (Definition 1,2). Then we compare the changes with those in ScoreS/W to prove the suitability of ScoreS for detecting AnomalyS and ScoreW for detecting **AnomalyW**, respectively.



See paper for more: online approach, theoretical guarantees, experiments on synthetic dataset **<u>Code</u>**: *https://github.com/minjiyoon/anomrank*

Metrics for AnomalyS and AnomalyW

We discretize the first and second order derivatives of ScoreS vector p_s as follows:

 $p'_{s} = \left[p_{s}(t + \Delta t) - p_{s}(t)\right] / \Delta t$ $p''_{s} = [(p_{s}(t + \Delta t) - p_{s}(t)) - (p_{s}(t) - p_{s}(t - \Delta t))] / \Delta t^{2}$

Definition 5 (AnomRankS) Given ScoreS vector p_s , AnomRankS a_s is an $(n \times 2)$ matrix $[p'_s p''_s]$, concatenating 1st and 2nd derivatives of p_s . The AnomRankS score is $||a_s||_1$.

We discretize the first and second order derivatives ScoreW vector p_w as follows: $p'_{w} = \left[p_{w}(t + \Delta t) - p_{w}(t)\right] / \Delta t$

 $p''_{w} = [(p_{w}(t + \Delta t) - p_{w}(t)) - (p_{w}(t) - p_{w}(t - \Delta t))] / \Delta t^{2}$

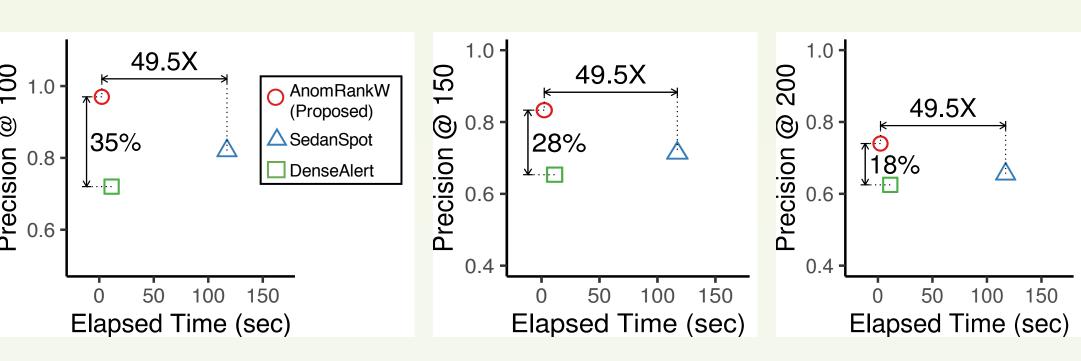
Definition 6 (AnomRankW)

Given ScoreW vector p_w , **AnomRankW** a_w is a $(n \times 2)$ matrix $[p'_w p''_w]$, concatenating 1st and 2nd derivatives of p_w . The AnomRankW score is $||a_w||_1$.

Dataset

DARPA has 4.5M IP-IP communications between 9.4K source IP and 2.3K destination IP over 87.7K minutes. Each communication is a directed edge (srcIP, dstIP, timestamp, attack).

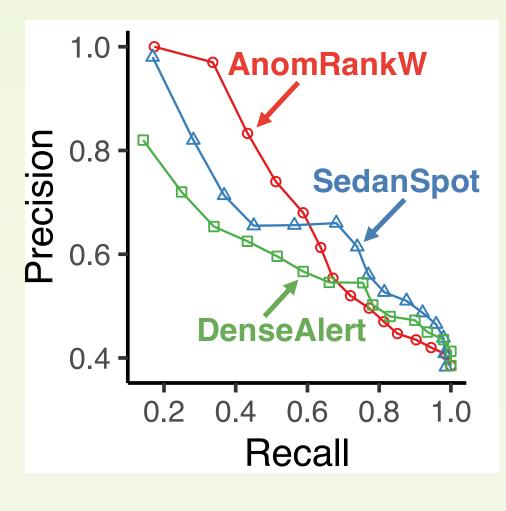
ENRON contains 50K emails from 151 employees over 3 years in the ENRON Corporation. Each email is a directed edge (sender, receiver, timestamp).



Anomaly Score	0.75
	0.50
	0.25
	0.00 ·
	1.00
	0.75
	0.50
	0.25
	0.00
	1.00
	0.75
	0.50
	0.25
	0.00
	May

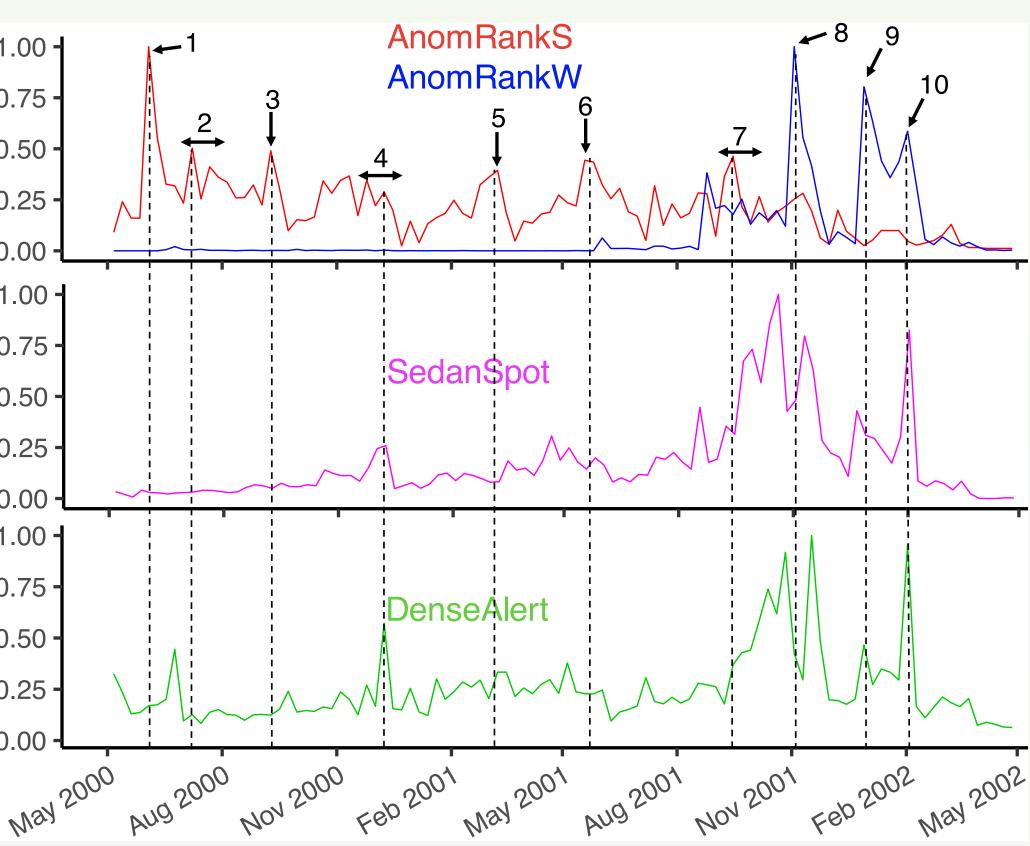
Experiments

Precision vs. Recall on DARPA



Accuracy vs. Speed on DARPA

Two-Pronged Approach pays off on ENRON



AnomRank localizes the culprits of anomalous events in DARPA

