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Graph Data is Ubiquitous

• Who-buys-which-products
• Who-follows-whom
• Who-pays-whom
• Protein relationship
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Graph Mining Algorithms are diverse

• Classification of web documents
• Clustering in market segmentation
• Recommendation in streaming services
• Fraud detection in banking 
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200+ graph mining papers published in 2019 



Lack of Unity in Graph Mining

• Which graph mining algorithm should we choose?
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Accuracy is more important to me.
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Lack of Unity in Graph Mining

• Distinct problem definitions and conceptual formulations
• Require expert experience and brute-force search
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Speed is more important to me.

I want accurate anomaly detection system.
Accuracy is more important to me.

Motivation Unification Automation Experiments Conclusion



We propose AutoGM

• Unify various graph mining algorithms in one framework
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We propose AutoGM

• Unify various graph mining algorithms in one framework
• Automate the generation of graph mining algorithm
• Deploy graph mining algorithms tailored to their scenarios
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Overview

1. Motivation
2. UnifiedGM: Unified Graph Mining Framework
3. AutoGM: Automation of Graph Mining Algorithm Development
4. Experiments
5. Conclusion
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Unification

• Message Passing
• UnifiedGM
• Reproduction of Existing Algorithms
• Conventional GM vs. GNNs
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Message Passing (1)

• What is Graph Mining?
• GIVEN:  global graph information 
• e.g., edge structure and feature information from other nodes
• ANSWER: queries at the node level 
• e.g., node clustering, classification, or recommendation
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Message Passing (2)

• What is Graph Mining?
• GIVEN:  global graph information 
• e.g., edge structure and feature information from other nodes
• ANSWER: queries at the node level 
• e.g., node clustering, classification, or recommendation

• Target graph algorithms
• Message passing mechanism
• Transmit the information necessary to answer such queries 
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Message Passing (3)

• Ex1: classical graph mining algorithms
• PageRank
• nodes propagate scalar scores to their neighbors

• Ex2: graph neural networks
• GCN
• nodes aggregate feature vectors from their neighbors 
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UnifiedGM (1)
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• Dimension 𝒅
• Width 𝒘
• Length 𝒌
• Nonlinearity 𝒍
• Aggregation strategy 𝒂
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UnifiedGM (1)
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• Dimension 𝒅 of passed messages
• 𝒅=1, messages are scalar scores

• Width 𝒘
• Length 𝒌
• Nonlinearity 𝒍
• Aggregation strategy 𝒂
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UnifiedGM (1)
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• Dimension 𝒅
• Width 𝒘
• Number of neighbors
• 𝒘=-1, all neighbors

• Length 𝒌
• Nonlinearity 𝒍
• Aggregation strategy 𝒂
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UnifiedGM (1)
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• Dimension 𝒅
• Width 𝒘
• Length 𝒌
• Number of message passing steps

• Nonlinearity 𝒍
• Aggregation strategy 𝒂
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UnifiedGM (1)
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• Dimension 𝒅
• Width 𝒘
• Length 𝒌
• Nonlinearity 𝒍
• Nonlinearity in the message passing

• Aggregation strategy 𝒂
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UnifiedGM (1)

• Dimension 𝒅
• Width 𝒘
• Length 𝒌
• Nonlinearity 𝒍
• Aggregation strategy 𝒂

ICDM'20: Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off 22

Motivation Unification Automation Experiments Conclusion



UnifiedGM (2)
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Width 𝒘

Aggregation 𝒂

Nonlinearity 𝒍

Length 𝒌

Dimension 𝒅

𝑋!: 𝑛×𝑑! initial statistic vectors
𝑋": 𝑛×𝑑 statistic vectors at step 𝑖
(𝑖 = 1,⋯ , 𝑘)

𝑊#: (𝑑!×𝑑) transformation matrix
𝑊": (𝑑×𝑑) transformation matrix
(𝑖 = 2,⋯ , 𝑘)



Reproduction of Existing Algorithms
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• Initial node statistics 𝑋<
• Parameters of UnifiedGM (𝐝, 𝐤,𝐰, 𝒍, 𝒂)
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Reproduction of Existing Algorithms
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• Initial node statistics 𝑋<
• Parameters of UnifiedGM (𝐝, 𝐤,𝐰, 𝒍, 𝒂)



Conventional GM vs. GNNs (1)
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Conventional 
Graph Mining
(e.g., PageRank)

Graph Neural 
Networks
(e.g., GCN)



Conventional GM vs. GNNs (1)
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Node feature information Semi-supervised learning

Conventional 
Graph Mining
(e.g., PageRank)

Graph Neural 
Networks
(e.g., GCN)



Conventional GM vs. GNNs (2)
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Node feature information Semi-supervised learning

Conventional 
Graph Mining
(e.g., PageRank)

A set of seed nodes 
to initialize with scores (d = 1) No training phase

Graph Neural 
Networks
(e.g., GCN)

Node features (d > 1) Transformation matrix 𝑊 is 
trained using node labels



Conventional GM vs. GNNs (3)
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Node feature information Semi-supervised learning

Conventional 
Graph Mining
(e.g., PageRank)

We can use node features !!!
• Initial input dimension 𝒅𝟎= # feature
• 1st layer transformation matrix 𝑾𝟏 of

size (𝒅𝟎×𝟏)

No training phase

Graph Neural 
Networks
(e.g., GCN)

Node features (d > 1) Transformation matrix 𝑊 is 
trained using node labels



Conventional GM vs. GNNs (4)
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Node feature information Semi-supervised learning

Conventional 
Graph Mining
(e.g., PageRank)

We can use node features
• Initial input dimension 𝑑#= # feature
• 1st layer transformation matrix 𝑊$ of size

(𝑑#×1)

We are learnable !!!
• Decaying coefficient 𝒄 corresponds to

(𝟏×𝟏) transformation matrix 𝑾
• Set heuristically (e.g., 𝒄 = 𝟎. 𝟖𝟓)
• Trainable with gradient descent

Graph Neural 
Networks
(e.g., GCN)

Node features (d > 1) Transformation matrix 𝑊 is 
trained using node labels



Parameter Selection

Given an application,
how could we choose proper parameters (𝐝, 𝐤,𝐰, 𝒍, 𝒂)? 
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Overview

1. Motivation
2. UnifiedGM: Unified Graph Mining Framework
3. AutoGM: Automation of Graph Mining Algorithm Development
4. Experiments
5. Conclusion
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AutoGM (1)

Given a user’s scenario
• Generate an optimal graph algorithm autonomously
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AutoGM (2)

Given a user’s scenario
• Generate an optimal graph algorithm autonomously
• Find the optimal parameters 𝐝, 𝐤,𝐰, 𝒍, 𝒂 of UnifiedGM autonomously
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AutoGM (3)

Given a user’s scenario
• Generate an optimal graph algorithm autonomously
• Find the optimal parameters 𝐝, 𝐤,𝐰, 𝒍, 𝒂 of UnifiedGM autonomously
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I want fast recommendation system.
Maximum time is 10 seconds

I want accurate anomaly detection system.
Minimum accuracy is 80%



AutoGM (3)

Given a user’s scenario
Given a user’s budget on computation time and accuracy
• Generate an optimal graph algorithm autonomously
• Find the optimal parameters 𝐝, 𝐤,𝐰, 𝒍, 𝒂 of UnifiedGM autonomously
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I want fast recommendation system.
Maximum time is 10 seconds

I want accurate anomaly detection system.
Minimum accuracy is 80%



Budget-aware objective function (1)

• Graph algorithm 𝒙 = 𝐝, 𝐤,𝐰, 𝒍, 𝒂
• Minimum accuracy constraint 𝒂𝒄𝒄𝒎𝒊𝒏
• 𝑔 𝑥 = 𝑡𝑖𝑚𝑒
• ℎ 𝑥 − ℎ4"5 = 𝑎𝑐𝑐 − 𝑎𝑐𝑐4"5
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• Maximum inference time 𝒕𝒊𝒎𝒆𝒎𝒂𝒙
• 𝑔 𝑥 = −𝑎𝑐𝑐
• ℎ 𝑥 − ℎ4"5 = 𝑡𝑖𝑚𝑒489 − 𝑡𝑖𝑚𝑒



Budget-aware objective function (2)

• Graph algorithm 𝒙 = 𝐝, 𝐤,𝐰, 𝒍, 𝒂
• Minimum accuracy constraint 𝒂𝒄𝒄𝒎𝒊𝒏
• 𝑔 𝑥 = 𝑡𝑖𝑚𝑒
• ℎ 𝑥 − ℎ4"5 = 𝑎𝑐𝑐 − 𝑎𝑐𝑐4"5
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• Maximum inference time 𝒕𝒊𝒎𝒆𝒎𝒂𝒙
• 𝑔 𝑥 = −𝑎𝑐𝑐
• ℎ 𝑥 − ℎ4"5 = 𝑡𝑖𝑚𝑒489 − 𝑡𝑖𝑚𝑒

Barrier Method



AutoGM with Bayesian Optimization

Optimal graph algorithm
𝒙 = 𝐝, 𝐤,𝐰, 𝒍, 𝒂 for Graph 𝑮
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AutoGM
(Bayesian Optimization)

• Graph 𝑮
• User’s Budget 

( 𝒂𝒄𝒄𝒎𝒊𝒏 or 𝒕𝒊𝒎𝒆𝒎𝒂𝒙)
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Effectiveness of AutoGM
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(a) Accuracy constraints on the Citeseer dataset (b) Time constraints on the Citeseer dataset



Efficiency of AutoGM (1)
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Efficiency of AutoGM (1)
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• Random Search fails to find any algorithm satisfying the given constraints



Efficiency of AutoGM (2)
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• Performance is still lower than the algorithms found by AutoGM



Efficiency of AutoGM (3)
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• By exhausting the budget, AutoGM brings the best trade-off
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Conclusion

• Unification of Graph Mining algorithms
• Automation of Graph Mining algorithm developments
• Budget awareness
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Conclusion

• Unification of Graph Mining algorithms
• Automation of Graph Mining algorithm developments
• Budget awareness

Empower practitioners without much expertise 
to deploy Graph Mining algorithms
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Thank you
Paper: https://minjiyoon.xyz
Github: https://github.com/minjiyoon/ICDM20-AutoGM
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