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Graph Mining Algorithms are diverse

* Classification of web documents
* Clustering in market segmentation
* Recommendation in streaming services

* Fraud detection in banking
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Graph Mining Algorithms are diverse

* Classification of web documents
* Clustering in market segmentation
* Recommendation in streaming services

* Fraud detection in banking

200+ graph mining papers published in 2019

ICDM'20: Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off 6



— Motivation = Unification = Automation == Experiments =——— Conclusion =——e

Lack of Unity in Graph Mining

* Which graph mining algorithm should we choose?
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| want fast recommendation system. | want accurate anomaly detection system.
Speed is more important to me. Accuracy is more important to me.

S~ e
dh

ICDM'20: Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off 7



— Motivation = Unification = Automation == Experiments =——— Conclusion =——e

Lack of Unity in Graph Mining

* Distinct problem definitions and conceptual formulations
* Require expert experience and brute-force search

TN TN

| want fast recommendation system. | want accurate anomaly detection system.
Speed is more important to me. Accuracy is more important to me.

S~ e
dh
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We propose AutoGMV

* Unify various graph mining algorithms in one framework
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We propose AutoGMV

* Unify various graph mining algorithms in one framework
* Automate the generation of graph mining algorithm
* Deploy graph mining algorithms tailored to their scenarios
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Unification

* Message Passing
e UnifiedGM
* Reproduction of Existing Algorithms

e Conventional GM vs. GNNSs
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Message Passing (1)

* What is Graph Mining?
* GIVEN: global graph information
e e.g., edge structure and feature information from other nodes
* ANSWER: queries at the node level
* e.g., node clustering, classification, or recommendation
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Message Passing (2)

* What is Graph Mining?
* GIVEN: global graph information
e e.g., edge structure and feature information from other nodes
* ANSWER: queries at the node level
* e.g., node clustering, classification, or recommendation

* Target graph algorithms
* Message passing mechanism
* Transmit the information necessary to answer such queries
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Message Passing (3)

* Ex1: classical graph mining algorithms
* PageRank
* nodes propagate scalar scores to their neighbors

* Ex2: graph neural networks
* GCN
* nodes aggregate feature vectors from their neighbors
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UnifiedGM (1)
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UnifiedGM (1)

* Dimension d of passed messages
* d=1, messages are scalar scores
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* Dimension d
¢ Wldth w Dimension 0.6
e Length k | H

* Number of message passing steps
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* Dimension d
¢ Wldth w Dimension 0.6
* Length k | H

* Nonlinearity [
* Nonlinearity in the message passing
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UnifiedGM (1)

* Dimension d

* Width w

e Length k

* Nonlinearity

* Aggregation strategy a

Automation

Experiments == Conclusion ——e
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UnifiedGM (2)
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Reproduction of Existing Algorithms

Algorithm | Original message passing equation | Initial node statistics | d k w l a

PageRank [19] X =c(D7YA) Xy _1 % for all nodes 1 00 -1 False NA
Pixie [6] Xi(u) =3, EN(u) f( k—1(v) 1 1 for seeds, O others | 1 sample % False NN
GCN [11] Xy, = ReLU ((D— 3(A+1,)D"2 )Xk_lwk) feature vectors 64 2 1 True  SS
GraphSAGE [8] | X (u) = ReLU (W > veN(u) U Xk_l('v)Wk) feature vectors 64 2 25  True SA
SGCN [25] X =D 2(A+I,)D" 3% X1 Wi feature vectors 64 2 1 False SS

* Initial node statistics X
* Parameters of UnifiedGM (d, Kk, w, [, a)
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Reproduction of Existing Algorithms

Algorithm | Original message passing equation | Initial node statistics | d k w l a

PageRank [19] | X =c(D71A)Xk_1 L for all nodes 1 oo -1 False NA
Pixie [6] Xip(u)=>5>", LEN(a0) Xi_1(v) 1 for seeds, O others | 1 sample % False NN
GCN [11] Xy, = ReLU ( (D™2(A+ I,)D™2)Xp_1 Wi ) feature vectors 64 2 1 True  SS
GraphSAGE [8] | X (u) ReLU (b 71 Zvenuyun Xe- 1(v)Wk) feature Vectors 64 2 25 True SA
SGCN [25] X =D 3 (A+I1,)D™ 3 X1 Wy feature vectors 64 2 -1 False SS

* Initial node statistics X
* Parameters of UnifiedGM (d, Kk, w, [, a)
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Conventional GM vs. GNNs (1)

Conventional
Graph Mining
(e.g., PageRank)

Graph Neural

Networks
(e.g., GCN)
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Conventional GM vs. GNNs (1)

Node feature information Semi-supervised learning

Conventional
Graph Mining
(e.g., PageRank)

Graph Neural

Networks
(e.g., GCN)
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Conventional GM vs. GNNs (2)

Node feature information Semi-supervised learning

Conventional A set of seed nodes

Graph Mining . . )
(e.q., PageRank) to initialize with scores (d = 1)

No training phase

Graph Neural
Networks Node features (d > 1)
(e.g., GCN)

Transformation matrix W is
trained using node labels
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Conventional GM vs. GNNs (3)

Node feature information Semi-supervised learning

We can use node features !!!
* Initial input dimension d= # feature

1% layer transformation matrix W, of
size (dyx1)

Conventional
Graph Mining
(e.g., PageRank)

No training phase

Graph Neural
Networks Node features (d > 1)
(e.g., GCN)

Transformation matrix W is
trained using node labels
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Unification Automation

Experiments

Conventional GM vs. GNNs (4)

Node feature information

Semi-supervised learning

Conventional
Graph Mining
(e.g., PageRank)

We can use node features
* Initial input dimension d,= # feature

e 15t [ayer transformation matrix W; of size
(dox1)

We are learnable !!!

 Decaying coefficient ¢ corresponds to
(1x1) transformation matrix W

* Set heuristically (e.g., c = 0.85)

* Trainable with gradient descent

Graph Neural

Networks
(e.g., GCN)

Node features (d > 1)

Transformation matrix W is
trained using node labels
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Parameter Selection
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Given an application,
how could we choose proper parameters (d,k,w, [, a)?
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AutoGM (1)

Given a user’s scenario
* Generate an optimal graph algorithm autonomously
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AutoGM (2)

Given a user’s scenario
- o] b alaorit |
* Find the optimal parameters (d, k, w, [, a) of UnifiedGM autonomously
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AutoGM (3)

Given a user’s scenario
- o] b alaorit! |
* Find the optimal parameters (d, k, w, [, a) of UnifiedGM autonomously

T TN TN

| want fast recommendation system. | want accurate anomaly detection system.
Maximum time is 10 seconds Minimum accuracy is 80%

dh dh
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AutoGM (3)

= , .
Given a user’s budget on computation time and accuracy

- o) o aleorit] |
* Find the optimal parameters (d, k, w, [, a) of UnifiedGM autonomously

T TN TN

| want fast recommendation system. | want accurate anomaly detection system.
Maximum time is 10 seconds Minimum accuracy is 80%

dh dh
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Budget-aware objective function (1)

Topt = argmin, g(z) subject to hA(x) — Apin > 0

* Graph algorithm x = (d, k,w, [, a)

* Minimum accuracy constraint acc,,, * Maximum inference time time,,,,,
* g(x) = time * g(x) = —acc
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Budget-aware objective function (2)

Topt = argmin, g(x) subject to h(z) — hyin > 0
l Barrier Method
fem(z) = g(x) — Alog(h(x) — Amin)

Lopt — argmmx fGM (513)

* Graph algorithm x = (d, k,w, [, a)

* Minimum accuracy constraint acc,,, * Maximum inference time time,,,,,
e g(x) = time * g(x) = —acc
* h(x) — hyin = acc — accpin * h(x) — hpyn = time,,q — time
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AutoGM with Bayesian Optimization

e Graph G ‘
* User’s Budget

( accC,,in OF timemax)

‘Optimal graph algorithm
x= (d, kw1l a)for Graph G
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Effectiveness of AutoGM

J
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(a) Accuracy constraints on the Citeseer dataset

Experiments
J
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Inference Time (s)

(b) Time constraints on the Citeseer dataset
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Constraint 3
(t<0.1)

Constraint 2
(t<0.01)

Constraint 1
(t<0.004)
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Efficiency of AutoGM (1)

Experiments

Conclusion =———

Fastest Inference (s) Accuracy Highest Accuracy Inference (s)
Dataset Search(s) | Min.Acc. | AutoGM Random AutoGM Random | Max.Time(s) | AutoGM Random AutoGM Random
Cora 450 0.78 0.0034 - 0.79 - 0.004 0.77 0.77 0.0036 0.0033
Citeseer 800 0.67 0.0039 0.0039 0.67 0.67 0.004 0.67 - 0.0039 -
Pubmed 1,800 0.75 0.021 - 0.77 - 0.004 0.76 0.71 0.0036 0.0039
AmazonC 5,700 0.85 0.032 0.033 0.89 0.87 0.04 0.85 - 0.032 -
AmazonP 18,000 0.93 0.047 0.065 0.94 0.93 0.05 0.94 - 0.048 -
CoauthorC 2,500 0.8 0.015 0.016 0.8 0.82 0.02 0.83 0.75 0.015 0.02
CoauthorP 1,500 0.9 0.01 - 0.91 - 0.01 0.92 0.86 0.01 0.01
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Efficiency of AutoGM (1)

Fastest Inference (s) Accuracy Highest Accuracy Inference (s)
Dataset Search(s) | Min.Acc. | AutoGM Random AutoGM Random | Max.Time(s) | AutoGM Random AutoGM Random
Cora 450 0.78 L_0.0034 - 0.79 - 1 0.004 0.77 0.77 0.0036 0.0033
Citeseer 800 0.67 0.0039 0.0039 0.67 0.67 0.004 L 0.67 - 0.0039 - |
Pubmed 1,800 0.75 L_0.021 - 0.77 -1 0.004 0.76 0.71 0.0036 0.0039
AmazonC 5,700 0.85 0.032 0.033 0.89 0.87 0.04 0.85 - 0.032 -
AmazonP 18,000 0.93 0.047 0.065 0.94 0.93 0.05 0.94 - 0.048 -
CoauthorC 2,500 0.8 0.015 0.016 0.8 0.82 0.02 0.83 0.75 0.015 0.02
CoauthorP 1,500 0.9 [0.01 - 0.91 - | 0.01 0.92 0.86 0.01 0.01

 Random Search fails to find any algorithm satisfying the given constraints
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Efficiency of AutoGM (2)

Experiments

Conclusion =———

Fastest Inference (s) Accuracy Highest Accuracy Inference (s)
Dataset Search(s) | Min.Acc. | AutoGM Random AutoGM Random | Max.Time(s) | AutoGM Random AutoGM Random
Cora 450 0.78 0.0034 - 0.79 - 0.004 0.77 0.77 0.0036 0.0033
Citeseer 800 0.67 0.0039 0.0039 0.67 0.67 0.004 0.67 - 0.0039 -
Pubmed 1,800 0.75 0.021 - 0.77 - 0.004 0.76 0.71 0.0036 0.0039 |
AmazonC 5,700 0.85 0.032 0.033 0.89 0.87 0.04 0.85 - 0.032 -
AmazonP 18,000 0.93 0.047 0.065 0.94 0.93 0.05 0.94 - 0.048 -
CoauthorC 2,500 0.8 0.015 0.016 0.8 0.82 0.02 0.83 0.75 0.015 0.02 |
CoauthorP 1,500 0.9 0.01 - 0.91 - 0.01 0.92 0.86 0.01 0.01

* Performance is still lower than the algorithms found by AutoGM
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Efficiency of AutoGM (3)

Experiments

Conclusion =———

Fastest Inference (s) Accuracy Highest Accuracy Inference (s)
Dataset Search(s) | Min.Acc. | AutoGM Random AutoGM Random | Max.Time(s) | AutoGM Random AutoGM Random
Cora 450 0.78 0.0034 - 0.79 - 0.004 0.77 0.77 0.0036 0.0033
Citeseer 800 0.67 0.0039 0.0039 0.67 0.67 0.004 0.67 - 0.0039 -
Pubmed 1,800 0.75 0.021 - 0.77 - 0.004 0.76 0.71 0.0036 0.0039
AmazonC 5,700 0.85 0.032 0.033 0.89 0.87 0.04 0.85 - 0.032 -
AmazonP 18,000 0.93 0.047 0.065 0.94 0.93 0.05 0.94 - 0.048 -
CoauthorC 2,500 0.8 0.015 0.016 0.8 | 0.82 0.02 0.83 0.75 0.015 0.02
CoauthorP 1,500 0.9 0.01 - 0.91 - 0.01 0.92 0.86 0.01 0.01

* By exhausting the budget, AutoGM brings the best trade-off
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Conclusion

* Unification of Graph Mining algorithms
e Automation of Graph Mining algorithm developments
* Budget awareness
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Conclusion

* Unification of Graph Mining algorithms
e Automation of Graph Mining algorithm developments
* Budget awareness

Empower practitioners without much expertise
to deploy Graph Mining algorithms
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Thank you

Paper: https://minjiyoon.xyz
Github: https://github.com/minjiyoon/ICDM20-AutoGM
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