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Heterogeneous Graphs (HG)

« Composed of multiple types of nodes and edges
« EX) e-commerce networks
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Heterogeneous Graph Neural Networks
(HGNNs)

« MPNNSs for homogeneous graphs:
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Heterogeneous Graph Neural Networks
(HGNNs)

« MPNNSs for homogeneous graphs:
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Label imbalance between node types

Label-abundant
Product node type



Label imbalance between node types
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Label imbalance between node types

Label-abundant
Product node type
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Previous approach:

Graph-to-Graph Transfer Learning

Target heterogeneous graph
with no User labels

Another heterogeneous graph
with abundant User labels



Previous approach:

Graph-to-Graph Transfer Learning

______ : g° Proprietary graph
_____ -+ Distribution similarity

.* Same label scarcity issue
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with abundant User labels

Yoon et al., Zero-shot Transfer Learning within a Heterogeneous Graphs, NeurlPS'22 9



Transfer Learning within a Heterogeneous Graph
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Transfer Learning within a Heterogeneous Graph

Label-abundant
Product node type
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s this problem challenging?

Classifier
Source embedding t

Heterogeneous
Graph Neural Networks

Heterogeneous Graph
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s this problem challenging?

Classifier
t Target embedding

Heterogeneous
Graph Neural Networks
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Distinct Feature Extractors in HGNNs




Distinct Feature Extractors in HGNNs

Source embedding Target embedding




Distinct Feature Extractors in HGNNs

L2 norm of gradients
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Distinct Feature Extractors in HGNNs
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Then.. How can we solve this problem?

Label-abundant
Product node type
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Hints: Relationship between Feature Extractors

T Two-hop message-passing T
on a computation graph




Theoretically-induced
Mapping Function between Feature Extractors

Theorem 1. Given a heterogeneous graph G = {V,E, T, R}. For any layer | > 0, define the set of
(I — 1)-th layer HMPNN parameters as

ol-1) _ {M,Sl_l) r € R} U {Wt(l—l) teT). 9

Let A be the total n X n adjacency matrix. Then for any s,t € T there exist matrices A}, = a;s(A)

and Q}, = q1s(Q"~Y)) such that
H{" = A} H{ (10)

where a;s(-) and q;5(-) are matrix functions that depend duly on s, t.

Hand-computed
mapping functions
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Proposed method:

Knowledge Transfer Networks (KTN)

tKTN(Ht(L)) — AtsHt(L Learnable
L) mapping functions
HY — tyern (H, )H

»CKTN — | 5
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Proposed method:

Knowledge Transfer Networks (KTN)

tKTN(H(L)) = AtsH(L)Tts
LKTN = HH( ) — tern(H, ) ‘

~.

mzn Lcn(g(£(G, X)s), Vs) HA (G, X)s — trrn(£(G, X)1)||5

fa g, KTN
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Knowledge transfer loss
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Experiment (1) Zero-shot Transfer Learning

18 different tasks
« 6 SOTA zero-shot transfer learning baselines

- 2 traditional label propagation baselines
« 73% higher in MRR

NDCG Zero-shot transfer learning on OAG-CS Zero-shot transfer learning on Pubmed
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Experiment (2) Generality

* 6 different HGNN models

* 960% improvement

NDCG Generality of KTN across 6 different HGNN models
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Paper: www.minjiyoon.xyz/Paper/KTN.pdf }.,:.T.‘NEURALINFORMATION

Code: https://github.com/minjiyoon/KTN sy, PROCESSING SYSTEMS

Check out our paper at

NeurlPS 2022!
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