

Fast and Accurate Random Walk with Restart on Dynamic Graphs with Guarantees

Minji Yoon, Woojeong Jin, and U Kang Data Mining Lab Dept. of CSE Seoul National University

Outline

Problem Definition

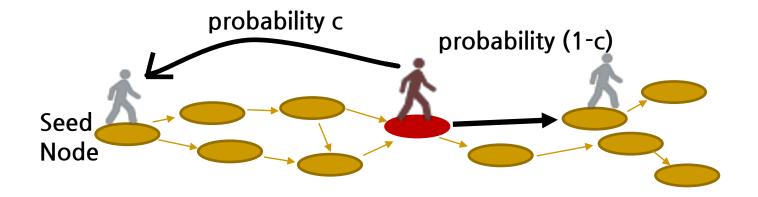
- Proposed Method
- Experiments
- Conclusion

Motivation

- Measuring similarity score between two nodes in a graph
 - Various applications across different domains
 - Ranking, Community detection, Link prediction, and Anomaly Detection.
 - Random Walk with Restart (RWR)
 - Consider the global network from a particular user's point of view

Random Walk with Restart

- A random surfer
 - Start at seed node
 - Walk along edges with probability (1 c)
 - $\hfill\square$ Jump back to the seed node with probability c



Challenges

- Majority of RWR methods have focused on static graphs
- Many real-world graphs are dynamic
 - Facebook: +5 users/second
 - □ World Wide Web: ±600,000 webpages/second
- RWR computation on dynamic graphs

Problem Definition : Dynamic RWR

• **Given:** previous RWR vector \mathbf{r}_{old} , row-normalized adjacency matrix $\widetilde{\mathbf{A}}$, update in $\widetilde{\mathbf{A}}$: $\Delta \mathbf{A}$, seed node s, restart probability c

$$\mathbf{r}_{\text{old}} = (1 - c)\widetilde{\mathbf{A}}^{\mathrm{T}}\mathbf{r}_{\text{old}} + c\mathbf{q}_{\text{s}}$$

• **Find:** updated RWR vector \mathbf{r}_{new} of updated graph $\tilde{\mathbf{A}} + \Delta \mathbf{A}$ which satisfice the following equation:

$$\mathbf{r}_{new} = (1-c)(\widetilde{\mathbf{A}} + \Delta \mathbf{A})^{\mathrm{T}}\mathbf{r}_{new} + c\mathbf{q}_{s}$$

Problem Definition : Dynamic RWR

Input:

- □ $\mathbf{r}_{old} \in \mathbb{R}^{n \times 1}$: previous RWR score vector
- □ $\widetilde{\mathbf{A}} \in \mathbb{R}^{n \times n}$: row-normalized adjacency matrix of graph *G*
- □ $\widetilde{\mathbf{B}} \in \mathbb{R}^{n \times n}$: row-normalized adjacency matrix of updated graph $G + \Delta G$
 - $\Delta A = \widetilde{B} \widetilde{A}$, difference between \widetilde{A} and \widetilde{B}
- □ $\mathbf{q}_s \in \mathbb{R}^{n \times 1}$: seed vector (*s*-th unit vector)
- □ $c \in \mathbb{R}$: restart probability

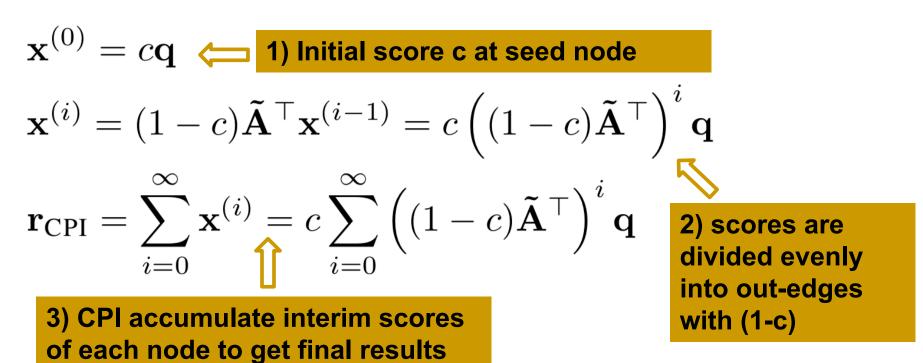
Output:

□ $\mathbf{r}_{new} \in \mathbb{R}^{n \times 1}$: updated RWR score vector

CPI: Cumulative Power Iteration

- Static RWR computation method
- Re-interpretation of RWR
- Propagation of scores across a graph
 - 1) Score c is generated from the seed node
 - 2) At each step, scores are divided evenly into outedges with decaying coefficient (1 - c)
 - 3) Each node accumulates scores they have received
 - Accumulated scores become RWR score of each node

CPI: Cumulative Power Iteration



• $\mathbf{x}(i) \in \mathbb{R}^{n \times 1}$

- Interim score vector computed from *i*th iteration
- Have scores propagated across nodes at *i*th iteration as entries

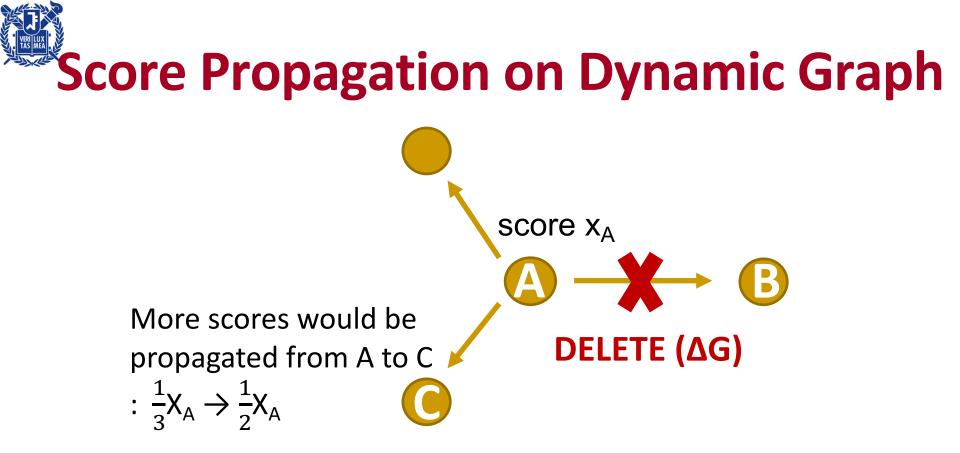
Outline

Problem Definition

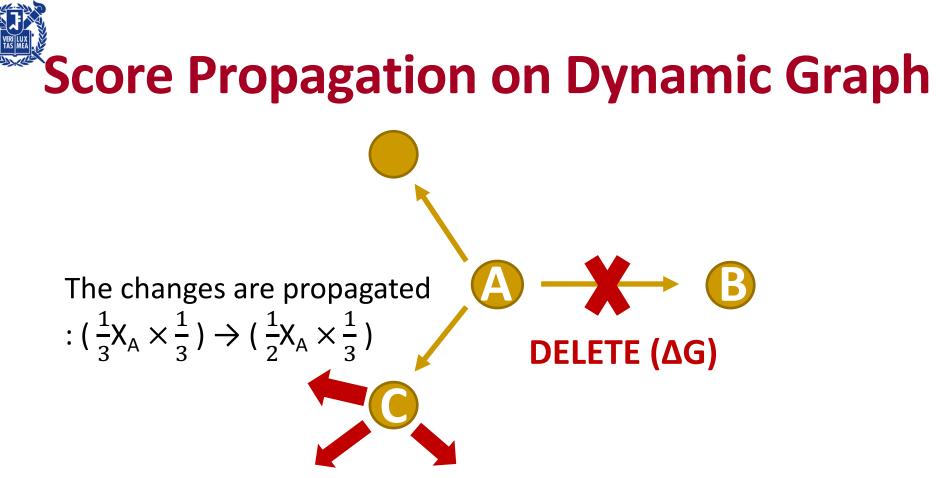
Proposed Method

Experiments

Conclusion



- RWR scores of nodes are determined by arrangement of edges
 - 1. When the graph G is updated with ΔG
 - 2. Propagation of scores around ΔG is changed



- 3. These small changes are propagated
- 4. Affect previous propagation pattern across whole graph
- 5. Finally lead to \mathbf{r}_{new} different from \mathbf{r}_{old}

Minji Yoon (SNU)

OSP: Offset Score Propagation

$$\mathbf{q}_{\text{offset}} \leftarrow (1-c)(\tilde{\mathbf{B}}^{\top} - \tilde{\mathbf{A}}^{\top})\mathbf{r}_{\text{old}} = (1-c)(\Delta \mathbf{A})^{\top}\mathbf{r}_{\text{old}}$$
$$\mathbf{x}_{\text{offset}}^{(i)} \leftarrow ((1-c)\tilde{\mathbf{B}}^{\top})^{i}\mathbf{q}_{\text{offset}}$$

$$\mathbf{r}_{\text{offset}} \leftarrow \sum_{i=0}^{\infty} \mathbf{x}_{\text{offset}}^{(i)} = \sum_{i=0}^{\infty} ((1-c)\tilde{\mathbf{B}}^{\top})^{i} \mathbf{q}_{\text{offset}}$$

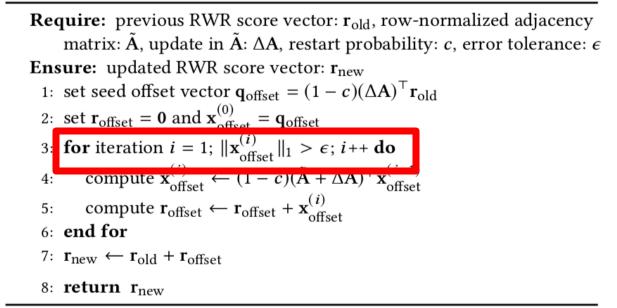
 $r_{\text{new}} \gets r_{\text{old}} + r_{\text{offset}}$

Convergence: Lemma3.1 Exactness: Theorem3.2

- 1. Calculate an offset seed vector q_{offset}
- 2. Propagate the offset scores across $G+\Delta G$ to get an offset score vector r_{offset}
- 3. Finally, OSP adds up r_{old} and r_{offset} to get r_{new}

OSP-T: OSP with **T**rade-off

Algorithm 1: OSP and OSP-T Algorithm



- Approximate method for dynamic RWR
- Use the same algorithm with OSP
- Regulates accuracy and speed using higher error tolerance parameter ε

OSP-T: OSP with **T**rade-off

Time complexity (Theorem 3.3)

THEOREM 3.3 (TIME COMPLEXITY OF OSP-T). With error tolerance ϵ , OSP-T takes $O(m \log_{(1-c)}(\frac{\epsilon}{2}))$ where m is the number of nonzeros in $\tilde{A} + \Delta A$.

Error bound (Theorem 3.4)

THEOREM 3.4 (ERROR BOUND OF OSP-T). When OSP-T converges under error tolerance ϵ , error bound of RWR score vector \mathbf{r}_{new} computed by OSP-T is $O(\frac{\epsilon}{c})$.

OSP-T: OSP with **T**rade-off

Method	Speed	Accuracy	Coverage	Accuracy Bound	Time complexity model
TrackingPPR	Fast	Low	Undirected graph	No	Only with insertion of edges
LazyForward	Fast	Low	Undirected graph	No	Only with undirected graph
OSP	Medium	High	Directed/Undirected graph	Yes	General
OSP-T	Faster	Medium	Directed/Undirected graph	Yes	General

Previous Methods: TrackingPPR^[1], LazyForward^[2]

- Fail to provide theoretical accuracy bound
- Narrow down the scope of time complexity analysis
 - ΔG only with insertion of edges
 - ΔG on undirected graphs.

[1] Naoto Ohsaka, Takanori Maehara, and Kenichi Kawarabayashi, *Efficient PageRank tracking in evolving networks*, In Proceedings of the 21th ACM SIGKDD
[2] Hongyang Zhang, Peter Lofgren, and Ashish Goel, *Approximate Personalized PageRank on Dynamic Graphs*, In Proceedings of the 22th ACM SIGKDD

Discussion: Fast Convergence

- OSP,OSP-T, and CPI
 - Same upper bound O(m) for # visited edges / iteration
- In practice, OSP and OSP-T visit only small portion of edges:

$$\begin{aligned} \mathbf{q}_{\text{offset}} &= (1-c)(\Delta \mathbf{A})^{\top} \mathbf{r}_{\text{old}} \\ \|\mathbf{q}_{\text{offset}}\|_{1} &\leq (1-c) \| (\Delta \mathbf{A})^{\top} \|_{1} \\ & \mathbf{s}_{\text{parse Matrix with small update}} \\ \mathbf{x}_{\text{offset}}^{(i)} \leftarrow ((1-c) \tilde{\mathbf{B}}^{\top})^{i} \mathbf{q}_{\text{offset}} \end{aligned}$$

When \widetilde{B} is multiplied with q_{offset} in CPI, only small number of edges in \widetilde{B} would be visited

Small L1 length of q_{offset} leads to small computation!!

Discussion: Fast Convergence

#modified	СРІ			OSP			OSP-T			
edges	$\ \mathbf{q}_{\text{CPI}}\ _1$	# iter	#visited edges(×10 ³)	$\ \mathbf{q}_{\mathrm{offset}}\ _1$	# iter	#visited edges(×10 ³)	$\ \mathbf{q}_{\mathrm{offset}}\ _1$	# iter	#visited edges(×10 ³)	L1 norm error
1	1	116	3, 910, 864	2.60×10^{-9}	2	2, 145	2.60×10^{-9}	1	25	2.84×10^{-8}
10	1	116	3, 910, 863	1.51×10^{-7}	14	405, 717	1.51×10^{-7}	1	147	3.42×10^{-7}
10^{2}	1	116	3, 910, 858	2.19×10^{-6}	26	839, 137	2.19×10^{-6}	1	788	1.77×10^{-6}
10^{3}	1	116	3, 910, 808	2.31×10^{-5}	35	1, 169, 546	2.31×10^{-5}	1	4,098	1.64×10^{-5}
10^{4}	1	116	3, 910, 300	2.30×10^{-4}	47	1, 604, 965	2.30×10^{-4}	2	44, 960	$1.11 imes 10^{-4}$
10 ⁵	1	116	3, 905, 224	2.05×10^{-3}	61	2, 104, 446	2.05×10^{-3}	4	130, 470	$7.51 imes 10^{-4}$

edges of LiveJournal dataset: 34,681,189

- OSP and OSP-T visit only small portion of edges in the graph
 - Converge much faster than CPI does

Discussion: Effects of ΔG

Two factors in ΔG: theoretical analysis in Section 3.3

- How many nodes are modified?
- Which nodes are modified?
- 1. How many nodes are modified?
 - Size of ΔG
 - Larger size of ΔG
 - \Rightarrow Denser ΔA

$$\mathbf{q}_{\text{offset}} = (1 - c)(\Delta \mathbf{A})^{\top} \mathbf{r}_{\text{old}}$$
$$\mathbf{x}_{\text{offset}}^{(i)} \leftarrow ((1 - c)\tilde{\mathbf{B}}^{\top})^{i} \mathbf{q}_{\text{offset}}$$

- => Larger L1 length of q_{offset}
- => Longer computation time for $\mathbf{x}_{offset}(i)$

Discussion: Effects of ΔG

2. Which nodes are modified?

• Location of $\Delta G =>$ Location of nonzeros in $\Delta A(=\widetilde{B} - \widetilde{A})$

$$\mathbf{q}_{\text{offset}} = (1 - c)(\Delta \mathbf{A})^{\top} \mathbf{r}_{\text{old}}$$

- $\hfill\square$ Nonzeros in ΔA with high RWR nodes in r_{old}
 - Large q_{offset} => Running time skyrockets
- $\hfill\square$ Nonzeros in ΔA with low RWR nodes in r_{old}
 - Small q_{offset} => OSP-T converges quickly
- Real-world graphs follow power-law degree distribution
 - Few nodes having high RWR scores
 - Majority of nodes having low scores

Outline

Problem Definition Proposed Method Experiments Conclusion

Experimental Questions

- Q1. Performance of OSP
- Q2. Performance of OSP-T
- **Q3.** Effects of ΔG : size and location

Experimental Settings

- Machine: single workstation with 512GB memory
- Datasets: large-scale real-world graph data

Dataset	Nodes	Edges	Direction	Error tolerance (OSP-T)
WikiLink ¹	12,150,976	378,142,420	Directed	10^{-2}
Orkut ²	3,072,441	117,185,083	Undirected	5×10^{-3}
LiveJournal ²	3,997,962	34,681,189	Undirected	5×10^{-3}
Berkstan ²	685,230	7,600,595	Directed	10^{-4}
$DBLP^2$	317,080	1,049,866	Undirected	10^{-4}
$Slashdot^2$	82,144	549,202	Directed	10^{-4}

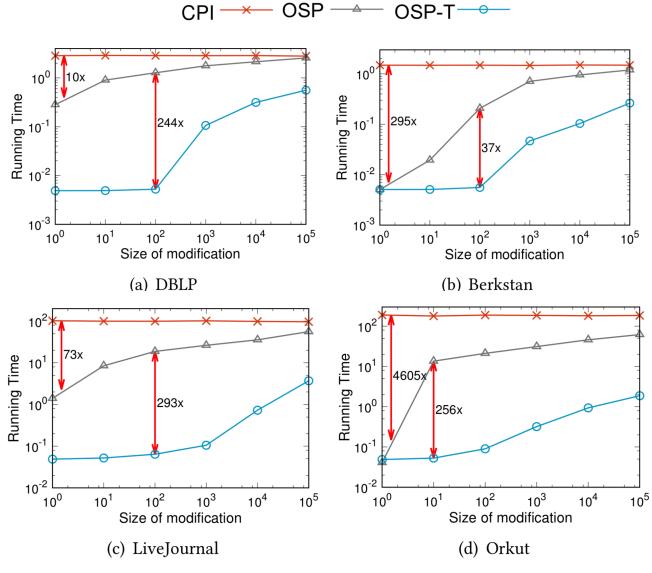
¹ http://konect.uni-koblenz.de/networks/

² http://snap.stanford.edu/data/

Q1. Performance of OSP

- How much does OSP improve performance for dynamic RWR computation from baseline static method CPI?
- Running time for tracking RWR exactly on a dynamic graph G varying the size of ∆G
 - Initial graph G with all its edges
 - Modify G by deleting edges.
 - 1 edges to 10⁵ edges

Q1. Performance of OSP



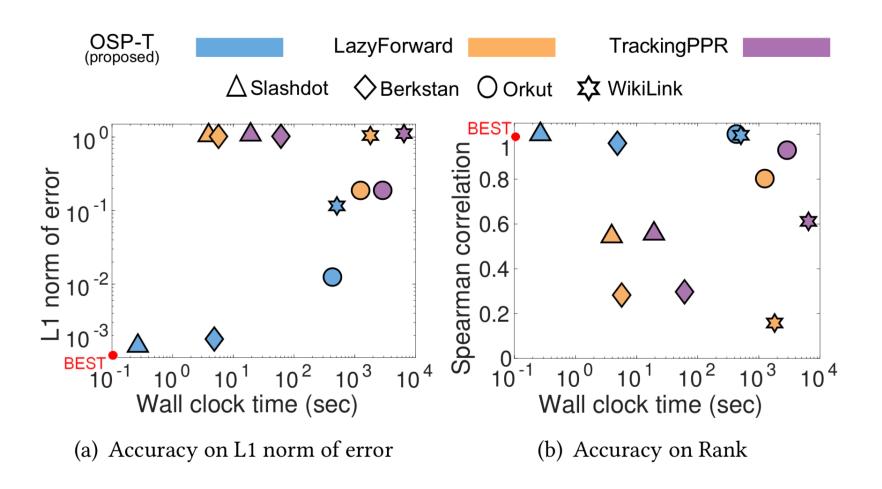
Minji Yoon (SNU)

Q2. Performance of OSP-T

- How much does OSP-T enhance computation efficiency, accuracy compared with its competitors?
- Experimental setting
 - Generate a uniformly random edge stream and divide the stream into two parts
 - Extract 10 snapshots from the second part
 - Initialize a graph with the first part of the stream
 - Update the graph for each new snapshot arrival
 - □ At the end of the updates, compare each algorithm.

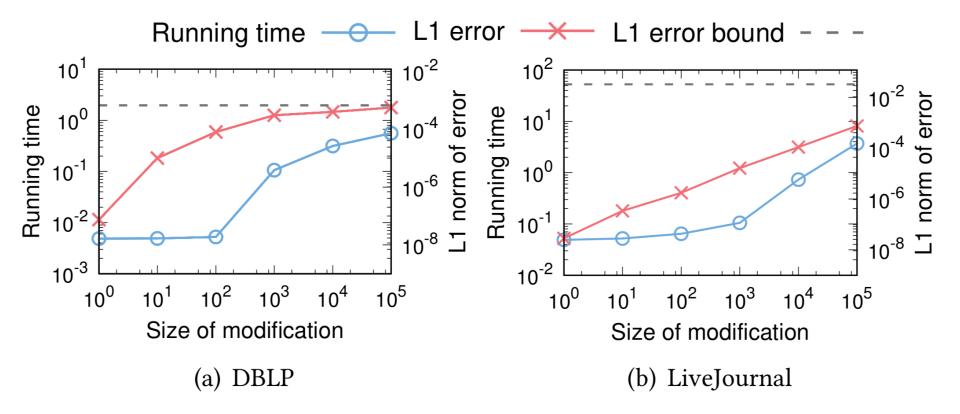
Q2. Performance of OSP-T

Trade-off between accuracy and running time



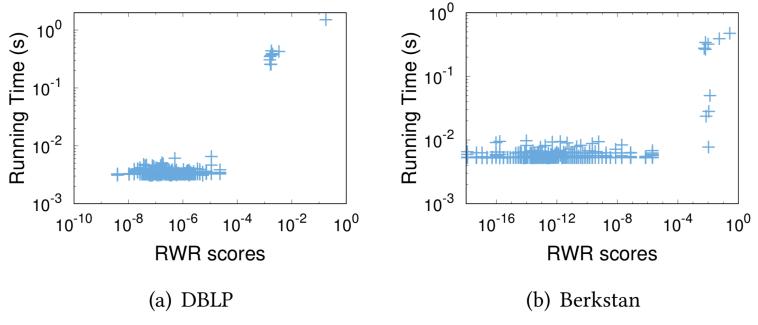
Q3. Effects of ΔG - Size

■ How does size of ∆G affect the performance of OSP-T?



Q3. Effects of Δ **G - Location**

- Experimental setting
 - Divide nodes evenly into 100 groups in the order of RWR scores.
 - Sample 10 nodes from each group.
 - For each sampled node u, delete an edge (u, v)



Minji Yoon (SNU)

Outline

Problem Definition

- Proposed Method
- Experiments

Conclusion

Conclusion

OSP (Offset Score Propagation)

- 1. Calculate offset scores around the modified edges
- 2. Propagate the offset scores across the updated graph
- Merge them with previous RWR scores to get updated RWR scores
- Main Results
 - Exactness of OSP
 - Error bound and time complexity of OSP-T
 - Faster and more accurate RWR computation than other methods on Dynamic graphs

Thank you !

Codes & datasets http://datalab.snu.ac.kr/osp

Minji Yoon (SNU)